1 ...6 7 8 10 11 12 ...21 Процесс возможно стимулировать внешним электромагнитным полем, уменьшая ширину энергетического барьера, подпитку расхода электронов осуществляем, подведя к полупроводнику с внешней стороны, подсоединив к контактам электрическую цепь, находящуюся под переменным электрическим током, противоположным по частотным характеристикам полю антенны излучения максимально для уменьшения нецелевого расхода энергии. Так как арсенид галлия в процессе не расходуется, определяем, что процесс каталитический, плазмохимический каталитический процесс туннельной эмиссией электронов полупроводника на поверхность и далее в тонкую пленку жидкости.
В энергетический баланс устройства включены следующие параметры: для расчета необходимо знать энтальпию реакции лизиса воды, для того чтобы рассчитать количество энергии, затрачиваемой на работу антенны излучения СВЧ, электромагнитного поля, расходуемой на процесс разложения единицы массы воды в пленке на поверхности в единицу времени, далее необходимо рассчитать энергетический выход от камеры сгорания, количество энергии, выделяющейся в процессе горения газовой смеси, состоящей из водорода и кислорода, в расчете учитывается энтальпия химической реакции горения водорода в кислороде.
В расчете массового баланса жидкости скользящей пленки по поверхности воды необходимо учесть зависимости толщины пленки жидкости от скорости и объема подачи воды на эмиттер и скорости вращения вала привода, сцепленного механически с приемной антенной СВЧ поля, далее учитываются вязкость воды и смачиваемость поверхности экрана приемной антенны. Учитывая данные параметры, мы имеем заданную толщину термолизуемой пленки и метод управления жидкостью применяем, управляющие (см. выше) параметры, независимо от положения в пространстве работу устройства.
Далее, рассчитаем зависимость параметров выходящего электромагнитного поля от количества подаваемой на антенну излучения электрической энергии и находим зависимость потенциала электрического поля равномерно распределенной по поверхности эмиттера плазмы, измеряемой в кулонах, от напряженности поля антенны излучения на поверхности антенны приема и расстояния от антенны излучения до поверхности туннельного эмиттера.
Поставим эксперимент: найдем зависимость температуры лизиса воды электромагнитным полем от потенциала холодной электронной плазмы на поверхности эмиттера и управляемой толщины пленки жидкости. Вычислив, исходя из полученных данных, количество энергии, подаваемой на приемную антенну от антенны излучения, снижающее температуру лизиса, и вероятностный результат, что данная величина меньше выхода энергии от реакции окисления в камере сгорания.
Убедившись в данном, мы сможем утверждать, что применение квантовой структуры энергетических уровней кристалла полупроводников, в том числе арсенида галлия, соответственно процесса туннельной эмиссии электронного газа на твердую поверхность и взаимодействия электронов холодной плазмы с тонкой пленкой, скользящей по поверхности эмиттера, то есть катализ холодной плазмой лизиса жидкости в пленке дает нам экзотермический выход от процесса термолизиса воды с последующим горением компонентов. То есть применение (см. выше) физических свойств квантового уровня материальных объектов и взаимодействие данных свойств с химическим уровнем материи позволяет наряду с физическими свойствами ядер атомов, реакции термоядерного синтеза, дает нам метод применения низкомолекулярных неорганических соединений, воды, в качестве источника энергии, топлива.
Данная величина, а именно рассмотренная энергетическая трата, в расчете есть в сумме с необходимой затратой электрической энергии на подпитку баланса электронного газа в системе, так как плазма диффундирует и далее уносится газами, не возобновляется необходимо доставить электроны (лептоны) в систему, применяя контакт находящегося под током проводника с полупроводником эмиттера, количество затрачиваемой энергии на подпитку плазмы находится экспериментально.
Далее, необходимо учитывать радиоотражающие свойства слоя полупроводника и массива антенны приема электромагнитного поля, численные значения данных характеристик. Экспериментально определяется толщина полупроводникового покрытия приемной антенны эмиттера (примеры формирования полупроводниковых пленок заданной толщины см. лит. 16).
Читать дальше