Таким образом, на пороге XX века в физику вошло довольно ясное представление об электроне как о непременной составляющей структуры вещества. Действительно, практически любой доступный экспериментатору образец вещества можно было заставить испускать поток электронов, подействовав одним из трех факторов: разностью потенциалов, теплом или светом. В общем, была понятна и роль каждого из этих факторов - они представляли собой просто разные способы сообщить электрону, заточенному в веществе, некоторую энергию, необходимую для его вызволения. Но разве физики могут удовлетвориться только таким, чисто качественным объяснением! Необходимо было согласовать основные закономерности всех эффектов с существовавшей в то время теорией. Но именно на этом пути исследователи столкнулись с неожиданными и, казалось бы, непреодолимыми препятствиями.
Надо сказать, что как раз на рубеже столетий произошло крайне важное для теоретической физики событие - окончательно оформилась классическая электродинамика, претендовавшая на полное и последовательное описание электрических и магнитных явлений. Великая заслуга создателей этой науки английских физиков М. Фарадея и Дж. Максвелла состояла в том, что они ввели в рассмотрение новый объект, особое состояние материи - электромагнитное поле. Благодаря этому все известные электрические, магнитные и даже световые явления можно было свести к нескольким фундаментальным законам распространения электромагнитного поля в пространстве и его взаимодействия с электрическими зарядами. После того, как на арену физических исследований вышла первая элементарная частица - электрон, усилия теоретиков и экспериментаторов сосредоточились на поиске конкретных закономерностей его поведения под действием электромагнитного поля.
Этот пункт оказался своеобразным средоточием веры и надежды. Физики верили в классическую электродинамику, которая позволила единым образом описать десятки разрозненных фактов в блестящем согласии с опытными данными. Поэтому они вполне серьезно надеялись на успех теории и в применении к электронам. Дело было, конечно, не только в простой надежде на успех. Вопрос ставился принципиально: справится ли существующая теория с описанием взаимодействия электромагнитного поля с электроном - мельчайшей структурной составляющей вещества? Положительный ответ на этот вопрос оказался бы величайшим триумфом теории, а отрицательный - наносил непоправимый ущерб ее основам.
В такой ситуации подробное изучение фотоэффекта давало физикам исключительную возможность для экспериментальной проверки теоретических предсказаний. Согласно классической электродинамике свет представляет собой совокупность электромагнитных волн - именно в форме волн проявляется электромагнитное поле в этом случае. Всякую волну можно характеризовать, например, интенсивностью и частотой (или величиной, обратно пропорциональной частоте, - длиной волны). Чем интенсивней поле, тем больше энергии оно несет. Что же происходит во время фотоэффекта?
Чтобы вырвать с поверхности металла электрон, каким-то образом связанный с остальными элементами вещества, электромагнитная волна должна "накачивать его энергией" до тех пор, пока эта связь не порвется, то есть кинетическая энергия электрона превзойдет по абсолютной величине его потенциальную энергию. После этого электрон покидает образец вещества с некоторой скоростью. В такой картине ясно, что чем интенсивней свет, тем большую энергию способен он передать электрону и тот будет вылетать из образца с большей скоростью.
Между тем экспериментальные данные по фотоэффекту давали совсем иную, весьма странную с точки зрения электродинамики картину. Начнем с того, что от интенсивности света, падающего на образец вещества, зависело только количество вылетающих электронов. Чем более интенсивный источник света использовался в опыте, тем больше электронов вылетало, тем сильней был вызываемый ими ток, регистрировавшийся специальным устройством. Скорость же электронов (или их кинетическая энергия) зависела только от длины волны падающего света! Удивительная ситуация - в результате облучения металлического образца, скажем, синим светом, электроны вылетали бы со значительно большими скоростями, чем в случае облучения красным светом. Но какова связь между окраской света и энергией, которую он передает электронам?
Известно было, что электромагнитные волны, соответствующие красному цвету, имеют большую длину волны, чем "синие" волны, то есть меньшую частоту. Но опять-таки классическая электродинамика не могла уловить связь между частотой я энергией.
Читать дальше