Прежде всего отметим, что уравнение Шредингера не дает никаких предсказаний о том, в какую конкретную точку попадет электрон. Тут царит чистая случайность - каждый электрон может, испытав взаимодействие с рассеивателем-мишенью, оказаться в любой точке фотопластинки, и, как мы убедимся немного позже, не существует средств, позволяющих сделать его судьбу более определенной. Но при регистрации большого потока частиц оказывается, что одни участки фотопластинки засвечены сильнее, а другие слабее, то есть на первые участки электроны попадают чаще, чем на вторые. Это и приводит в конце концов к наблюдаемому неравномерному распределению, причем интенсивность засветки в каждой точке пластики пропорциональна частоте попадания туда отдельных частиц. Если теперь принять полную интенсивность засветки всего экрана за единицу, то доля вспышек, приходящихся на одну точку, или, как говорят физики, относительная частота попадания, определит нам вероятность того, что любой отдельно выпущенный электрон окажется в конкретной точке экрана.
Попробуем немного изменить условия опыта и поместим между источником и регистрирующей частью (экраном или фотопластинкой) мишень из другого вещества. Картина распределения изменится; ведь электроны, вылетающие из источника, взаимодействуют теперь с другими атомами, однако принцип ее формирования останется прежним. Следовательно, распределения рассеянных электронов несут сведения о том, с каким веществом происходит взаимодействие. Речь опять-таки идет о вероятностной характеристике - разные атомы, на которых рассеиваются электроны, отбрасывают их в одну и ту же точку экрана с различной вероятностью.
Разумеется, результат любого такого опыта можно рассчитать заранее, решая уравнение Шредингера.
Таким образом, дебройлевские волны оказались лишь удобным вспомогательным приемом для вывода вероятностных характеристик поведения частиц в различных процессах. Такая точка зрения М. Борна, возможно, и не вызвала бы сильного потока споров, несмотря на чрезвычайную оригинальность. Более того, научная общественность с безусловным восторгом приняла бы ее в качестве временной меры спасения волновой механики, тем более что интерпретация, которой придерживался Э. Шредингер, была слишком уязвимой. Но ведь М. Борн настаивал на том, что вероятностные закономерности носят принципиальный характер и составляют суть квантовой теории.
Чтобы постичь преобразующую роль его позиции, следует обратить внимание вот на какие обстоятельства. Вероятностная точка зрения была известна и классической науке. Со случайными явлениями люди сталкивались и сталкиваются в самых разных областях практической деятельности.
Артиллерист, выпускающий снаряд по достаточно далекой (часто не видимой глазом) цели, никогда не может быть уверен в стопроцентном успехе. Как оценить ею мастерство во время учений? Дать один снаряд и предложить в качестве мишени скрытый за небольшим холмом макет танка? Но ведь известно опытный наводчик может и не попасть, а новичку, едва ли не впервые увидевшему орудие, удастся начисто смести макет. Случайность? Совершенно верно. Но нетрудно выяснить и закономерность. Уже при стрельбе несколькими снарядами выяснится, что взрывы опытного артиллериста происходят в среднем намного ближе к мишени, чем у новичка. Можно надеяться, что в первом случае макет будет разрушен гораздо быстрее. Источник случайности в этом примере вполне ясен - не видя цели, наводчик стреляет просто на определенное расстояние, потом немного меняет наводку, и так вплоть до попадания в мишень.
Классическая физика столкнулась со случайными событиями в процессе исследования природы тепловых явлений. Теплота обусловлена движением огромного количества молекул, образующих те или иные тела. В свою очередь, температуру тела можно определить через среднюю кинетическую энергию молекул. Пользоваться средними величинами в такой ситуации просто очень удобно и чаще всего вполне достаточно для практических целей. В классической физике предполагалось, что в принципе экспериментатор может проследить за траекторией каждой молекулы и, следовательно, полностью определить состояние микроскопического тела. Но поскольку это слишком сложная (в одном грамме обычного вещества насчитывается примерно 1023 частиц!) и не очень полезная процедура, лучше пользоваться вероятностным распределением молекул по скоростям, или по энергиям, или по импульсам и т. д.
Читать дальше