Как уже упоминалось, необходимые для деятельности клетки инструкции хранятся в ядре. Они записаны в энциклопедии жизни – линейной последовательности молекулы ДНК (дезоксирибонуклеиновая кислота), разбитой на тома – хромосомы. Вся ядерная ДНК человека помещается в 46 хромосомах. Честь иметь свою собственную энциклопедию помимо ядра удостоились митохондрии, и то потому, что они когда-то давно в эволюции произошли от симбиотических [39] Симбиоз – совместное существование организмов разных видов, приносящее им взаимную пользу.
альфа-протеобактерий. ДНК хранится в виде знаменитой двойной спирали, или «скрученной лестницы». Вся необходимая клетке информация закодирована в перекладинах этой лестницы, каждая из которых состоит из двух молекул нуклеотидов, азотистых оснований, расположенных строго друг напротив друга. Эти основания – аденин, гуанин, цитозин и тимин – обычно обозначают буквами А, Г, Ц и Т. Основания комплементарны друг другу. Это означает, что А может образовывать пару только с Т, а Г с Ц. Считывая информацию одной цепи ДНК методом секвенирования, вы получите последовательность оснований. Представьте себе эту последовательность как сообщение, написанное с помощью алфавита, в котором всего четыре буквы. Именно это сообщение и определяет поток химических реакций в клетке и, следовательно, особенности организма.
Длина молекулы ДНК, содержащейся в ядре, достигает 2 метров. В то время как само ядро имеет микроскопические размеры. Поэтому ДНК внутри ядра туго упакована при помощи особых белков – гистонов, которые выполняют также регуляторную и защитную роль.
Гены, открытые монахом Грегором Менделем в середине XIX века, на самом деле не что иное, как последовательности пар оснований на «лестнице жизни» – молекуле ДНК, которые кодируют матричные РНК, несущие в себе инструкции по сборке того или иного белка. А геном человека содержит приблизительно 20–25 тысяч генов, кодирующих белок. У высокоорганизованных организмов, в том числе и человека, гены настолько сложно устроены, что в среднем могут кодировать 10 разных белков, что на порядок увеличивает их разнообразие.
Информация, хранящаяся в ДНК, должна быть транслирована с помощью клеточного технического обеспечения в химические процессы в «теле» клетки. Однако ДНК слишком большая и не может покинуть пределы ядра, и тут в дело вступают очень на нее похожие, но гораздо более короткие молекулы – молекулы матричной рибонуклеиновой кислоты (мРНК). Мысленно разрежьте двуспиральную «лестницу» ДНК вдоль на две половины, разъединяя «ступеньки», и замените все молекулы тимина (Т) на химически сходные с ними молекулы урацила (У), сохранив по принципу комплементарности А, Г и Ц, – и вы получите молекулу РНК. Когда необходимо транслировать какой-либо ген в последовательность белка, специальные наномашины (геликазы) «расплетают» участок ДНК, содержащий этот ген. Теперь молекулы РНК-полимераз могут присоединиться к свободным основаниям молекулы ДНК и переписать ген на язык мРНК. В этом случае, так же как и в двойной спирали ДНК, могут образоваться лишь определенные связи. Например, с цитозином (Ц) молекулы ДНК может связаться только гуанин (Г) молекулы РНК, а с аденином (А) – только урацил (У). После того как все основания РНК выстроятся в цепочку вдоль ДНК, из них формируется зрелая мРНК. Сообщение, записанное основаниями РНК, так же относится к исходной молекуле ДНК, как негатив к позитиву. В результате этого процесса информация, содержащаяся в гене ДНК, переписывается на РНК. Данный процесс называется транскрипцией [40] Транскрипция – перенос генетической информации с ДНК на РНК.
.
Этот класс молекул РНК называется матричными, или информационными РНК (мРНК, или иРНК). Поскольку мРНК намного короче, чем ДНК в хромосоме, они могут проникать через ядерные поры в цитоплазму клетки. Таким образом, мРНК переносят информацию из ядра («руководящего центра») в «тело» клетки.
В «теле» клетки (цитоплазме [41] Цитоплазма – внутренняя среда клетки, кроме ядра, ограниченная плазматической мембраной.
) находятся молекулы РНК двух других классов, и они оба играют ключевую роль в сборке молекулы белка, кодируемого геном. Одни из них – рибосомные РНК, или рРНК. Они входят в состав клеточной структуры под названием рибосома [42] Рибосома – немембранная органелла живой клетки, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой мРНК.
. Рибосому можно сравнить с конвейером, на котором происходит сборка белка из аминокислот. Другие находятся в «теле» клетки и называются транспортные РНК, или тРНК. Эти молекулы устроены так: с одной стороны находятся три азотистых основания, а с другой – участок для присоединения аминокислоты. Эти три основания на молекуле тРНК могут связываться с парными им основаниями молекулы мРНК. Каждое из возможных 64 сочетаний трех букв триплетного кода (генетического кода [43] Генетический код – свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
) кодирует положение в белке одной из 20 аминокислот, либо «знаки препинания», означающие сигнал начала и окончания биосинтеза белка. В процессе сборки белка на рибосоме в одном «окошке» происходит присоединение определенной молекулы тРНК, несущей на себе новую аминокислоту, к молекуле мРНК. В другом «окошке» сидит тРНК с уже синтезированным обрывком белка. На него перекидывается аминокислота из первого «окошка», и цепь белка удлиняется. В конце концов выстроится полная цепочка аминокислот, расположенных в определенном порядке, и почти готовый белок отсоединится от рибосомы. Последовательность аминокислот – это первичная структура белка, которая определена сообщением, записанным на гене молекулы ДНК. Затем этот белок сворачивается, принимая окончательную форму, и может выполнять свою функцию. Иногда для полного созревания к нему нацепляются цепочки сахаров или липиды.
Читать дальше
Конец ознакомительного отрывка
Купить книгу