Ответ
Решая эту головоломку, нужно рассуждать следующим образом: рыцарей на острове менее 50, иначе путешественник, выбрав всех рыцарей, получил бы 50 ответов «пятьдесят», а, выбрав одного лжеца и 49 рыцарей, услышал бы иной набор ответов.
Получается, что лжецов на острове не менее 50 человек.
Поскольку набор ответов должен выглядеть правдоподобно, в наборе ответов должен быть 1 ответ «один», 2 ответа «два», 3 ответа «три», …, 9 ответов «девять» и еще 5 неправдоподобных ответов. Из этого можно сделать вывод, что на острове может быть не больше 9 рыцарей.
Десант
Условие
В игре «Десант» две армии захватывают страну. Игроки ходят по очереди, каждым ходом занимая один из свободных городов.
Первый город захватывается с воздуха, а каждым следующим ходом можно захватить любой населенный пункт, соединенный дорогой с каким-либо городом, уже занятым этой армией.
...
Подсказка: вспомните строение ароматических углеводородов.
Если таких городов нет, армия прекращает боевые действия, и игрок считается проигравшим.
Постройте такую схему городов и дорог, чтобы игрок, который ходит вторым, смог захватить более половины всех городов, независимо от того, как будет действовать армия его соперника.
Ответ
Такая схема изображена на рисунке 48.
Рис. 48. Выигрышная для второго игрока схема городов и дорог
Пусть на кольце последовательно расположены точки А1, В2, А3, В1, А2, В3, причем от точек А1, А3, А2 отходят «ветки» с N городами в каждой.
Если первый игрок первым ходом занимает точку на «ветке», армия второго игрока должна занять соответствующую точку Аi.
Если первая армия первым ходом занимает точку Ai, то вторая – Bi.
Если первый игрок первым ходом занимает точку Bi, то второй – любую из точек Aj (j не равно i). Дальнейшие действия очевидны. Поскольку в конце игры вторая армия занимает хотя бы две точки Ai, первый игрок захватывает не более, чем N + 3 точек.
Поэтому доля городов, захваченных армией второго игрока, не менее (2N + 3)/(3N + 6) > 1/2.
В условии задачи вместо 1/2 можно взять любое число, меньшее 2/3 (в этом случае N надо выбирать достаточно большим).
Фокусники
Условие
Два фокусника показывают зрителям интересный фокус. Одному из присутствующих они дают колоду карточек с числами от 1 до 78, чтобы он перемешал ее, отобрал любые 40 карточек и отдал их первому фокуснику.
Тот выбирает из полученных карточек две и возвращает их зрителю.
...
Подсказка: попробуйте разбить карточки на группы.
Последний добавляет к ним одну карточку из своих 38 и, перемешав, отдает эти карточки второму фокуснику, который сразу же показывает, какая из карточек была добавлена в стопку зрителем.
Попробуйте разоблачить фокус.
Ответ
Фокусники любым образом разбивают 78 карточек на 39 групп по две карты и запоминают эту комбинацию. Какие бы 40 карточек зритель не отдал первому фокуснику, среди них обязательно окажутся две карточки из одной пары (поскольку пар всего 39).
Первый фокусник должен дать зрителю две карточки из одной пары. Тогда карта, добавленная зрителем, будет из другой пары, ее сможет определить второй фокусник.
Кладоискатели
Условие
Три кладоискателя – Илья, Дмитрий и Алексей – нашли шкатулку, в которой было 6 монет: 3 золотых и 3 серебряных. Кладоискатели перемешали все монеты и по очереди с завязанными глазами вытащили по 2 монеты, не сказав друг другу, кому какие монеты достались.
...
Подсказка: вопрос должен допускать все три варианта ответа.
Илья не знает, какие монеты достались Дмитрию, а какие Алексею, но знает, какие монеты достались ему самому.
Придумайте вопрос, на который Илья ответит «да», «нет» или «не знаю», и по ответу на который вы сможете догадаться, какие монеты ему достались.
Ответ
Вопрос: «Правда ли, что у тебя золотых монет больше, чем у Алексея?».
Если у Ильи 2 золотые монеты, он скажет «да», поскольку у Алексея не может быть больше одной золотой монеты.
Если обе монеты Ильи серебряные, а у Алексея хотя бы одна золотая, он ответит «нет».
Если же ему достались разные монеты, он ответит «не знаю», так как у Алексея может оказаться как 2 золотые, так и 2 серебряные монеты.
Пятидесятикопеечные монеты
Условие
В ряд выложили 2001 монету достоинством 5, 10 и 50 копеек. Оказалось, что между любыми двумя пятикопеечными монетами лежит хотя бы одна монета, между двумя десятикопеечными монетами лежат хотя бы две монеты, а между любыми двумя пятидесятикопеечными монетами лежат хотя бы три монеты.
Читать дальше
Конец ознакомительного отрывка
Купить книгу