Пришел трёхлетка в детский сад и его, растопырив пальцы, спрашивают: "Сколько?" "Пять", отвечает. "Да не пять, а много!" - возражает тётя.
Великий московский ученый Венгер столбик закопал и надпись написал: "Десяток - предел для четырёхлетнего ребенка". И за столбик не ходи.
До семи лет, а потом еще и полгода в школе ребята приговорены к десятку, к восьми годам выйдут в два. Поставит тётя на одну полку три кубика, на другую пять, и с умным видом спрашивает: "Где больше?" Сама не видит, что ли?
Посидев как следует в одном десятке, первоклассники на вопрос: что лучше, двадцать девять бананов или пятьдесят два, хором отвечают: двадцать девять. А что они должны еще отвечать после столь тщательной методической обработки?
Знали мы, затевая "Стосчёт", что пятилетке и тысячи мало, но ограничились сотней, чтобы совсем не перепугать почитателей десятка. Хотя имеется у нас вполне посильное для пятилеток пособие для работы с пятнадцатизначными числами, куда "Стосчёт" войдет лишь частью.
И что это великие учёные так привязались к десятку? Еще в конце прошлого века М. Монтессори за полгода выучивала класс шестилеток и пятилеток читать, писать, производить сложение и вычитание с четырёх, пяти и шестизначными числами, естественно, без всякой для детей перегрузки, свойственной нынешним программам.
Вспомните Сергея Александровича Рачинского (1833-1902), работавшего в бедной, даже по нынешним понятиям, сельской Школе:
"Посторонних посетителей, изредка заглядывающих в мою Школу, всего более поражает умственный счёт её учеников.
Та быстрота и лёгкость, с которой они производят в уме умножения и деления, обращаются с мерами квадратными и кубическими, соображают данные сложной задачи, то радостное оживление, с которым они предаются этой умственной гимнастике, наводят на мысль, что в этой школе употребляются особые, усовершенствованные приёмы для преподавания арифметики, что я обладаю в этом отношении каким-то особым искусством или секретом.
Ничто не может быть ошибочнее этого впечатления. Конечно, теперь я владею некоторым навыком к умственному счету, могу импровизировать арифметические задачи в том быстром темпе, в котором они решаются моими учениками. Но до этих скромных умений довели меня или, лучше сказать, домучили сами ученики.
Именно домучили. Никогда я не занимался специально арифметикой, упражняться в умственном счёте никогда не думал. Принялся я за преподавание счёта в сельской школе, не подозревая, на что я иду.
Не успел я приступить к упражнениям в умственном счёте, которые до тех пор в школе не практиковались, как в ней к ним развилась настоящая страсть, не ослабевающая до сих пор. С раннего утра и до позднего вечера стали меня преследовать то одна группа учеников, то другая, то все вместе с требованием умственных задач. Считая эти упражнения полезными, я отдал себя в их распоряжение. Очень скоро оказалось, что они опережают меня, что мне нужно готовиться, самому упражняться.
К этому вскоре присоединилась страсть к письменным упражнениям в счёте. (Прошу методистов заметить: сначала упражнения в "умственном" счете и только потом - в "письменном"! - Н.З.). Ребята вздумали щеголять друг перед другом быстрым и точным умножением и делением на доске многозначных чисел, не поддающихся умственному счёту. Тут я было совершенно встал в тупик. Эти припадки обыкновенно случались вечером. Наши вечерние занятия, теперь все более и более принимающие характер правильных уроков, тогда были гораздо свободнее, да и теперь во избежание утомления часто приходится нарушать их однообразный строй. Вечером же происходили и спевки, в которых участвовали все мои помощники, все лучшие ученики. Я оставался один с непоющими учениками. Этого только и ждали мои мучители. Разом все они, человек тридцать, сорок, накидывались на меня с дощечками: "Сергей Александрович! Деленьице! - Мне на сотни! - Мне на единицы! - Мне на миллионы! - Мне на тысячи!" И решения подавались с такой быстротой, что я едва успевал писать задачи...
Тут однажды, в минуту отчаяния, я бессознательно тиснул у себя в мозгу какую-то неведомую мне пружину, и все деления стали выходить без остатка.
Восторгу ребят не было границ. Но увы! На следующий вечер они потребовали от меня того же, и я не мог исполнить их желания. Лишь впоследствии мало-помалу выяснил я себе то простое сочетание мнемонических приемов с быстрым умственным умножением, которое дает возможность придумывать безостановочно бесконечный ряд десяти и двенадцатизначных чисел, делимых без остатка на любые другие числа, и вместе с тем бесконечный простор для импровизации задач, устных и письменных.
Читать дальше