Чтобы дать точное определение пищевому мошенничеству, мы должны для начала разобраться с этими серыми областями, находящимися в рамках соответствующего законодательства. Некоторые вполне законные методы обработки тем не менее вводят нас в заблуждение, размывая границы реальности. Знаем ли мы, каким манипуляциям подвергаются продукты, чтобы они могли пройти определенные тесты? К примеру, если продукт обрабатывается таким образом, чтобы содержание азота соответствовало требованиям вне зависимости от источника этого азота, считается ли такое действие обманом покупателя относительно питательных свойств продукта? Добавьте тот факт, что технологии, в частности использование наночастиц, развиваются быстрее, чем мы успеваем их осмыслить, и вы поймете, что нас ждет увлекательное будущее.
Мы живем в сложной пищевой культуре, этого не отнять. Но мы не должны быть безвольными марионетками. И точно так же, как мы принимаем меры для снижения рисков, связанных с остальными аспектами нашей жизни (смотрим по сторонам, перед тем как перейти дорогу, или мажемся солнцезащитным кремом, отправляясь на пляж), мы можем активно подходить к выбору продуктов. Как мы узнали, в пищевой криминалистике многие методы анализа продуктов основаны на принципе «Ты есть то, что ты ешь». И человек не исключение. Химические соединения, присутствующие в продуктах, усваиваются нашим организмом, поэтому не стоит пассивно потреблять все подряд. Этот тезис – основа нашего благополучия. Система продовольственных поставок устроена так, что многое находится за пределами нашего контроля. Но мы не совсем беспомощны. В конце концов, будучи потребителями, мы сами решаем, что положить себе в рот. Так давайте выбирать тщательнее.
Приложение
Некоторые химические соединения, упоминаемые в этой книге
Сложные биохимические соединения (среди адептов химической науки обычно именуемые «органическими соединениями») состоят главным образом из углерода (С), водорода (H), кислорода (O), азота (N) и, в меньшей степени, из серы (S) и фосфора (P). Мириады химических соединений, встречающихся в природе и производящихся промышленным способом, возникают благодаря тому, что атом углерода C может образовывать четыре связи с другими элементами. Что особенно важно, атомы углерода могут соединяться друг с другом, образуя линейные цепочки, цепочки с ответвлениями и кольца (в основном гексагональные и пентагональные). Теоретически возможно неограниченное количество различных структур, однако образцы, встречающиеся в природе, в основном организованы в соответствии с наиболее распространенными схемами. Ниже мы приведем некоторые примеры таких схем.
Необходимо отметить, что, так как в этих схемах всегда присутствуют C и H, мы обычно не отмечаем их на рисунке: это заметно осложнило бы даже самые простые схемы. К примеру, самая обычная жирная кислота, если отметить на схеме все атомы C и H, будет выглядеть следующим образом:
В сокращенной формуле, указанной ниже, опущены почти все атомы C и H, как это принято в химии и биохимии при указании молекулярной структуры:
Трихлоранизол (TCA) – натуральное соединение, придающее вину затхлый или пробковый привкус.
Диметилполисилоксан (E900) – промышленный полимер, который добавляют в растительные масла, чтобы они не пенились при жарке.
Анилин – денатуратор, который добавляют в растительные масла, чтобы сделать их пригодными только для промышленных целей.
Анилид – соединение, которое образуется при рафинировании промышленного масла с целью удаления анилина.
Пирофеофитин А (PPP) – продукт разложения хлорофилла, соединение, придающее оливковому маслу зеленый оттенок.
Читать дальше
Конец ознакомительного отрывка
Купить книгу