С рождественскими сувенирами могут уйти четыре покупателя, поскольку не имеется такого начального числа сувениров, которые позволят в соответствии с условиями пятому покупателю забрать шесть рождественских сувениров и еще 1/6 оставшихся.
Условие
В 6 часов утра в воскресенье гусеница начала подниматься по стволу дерева. В течение дня, то есть до 18 часов, она поднималась на высоту 5 м, а в течение ночи спускалась на 2 м. В какой день и час она будет на высоте 9 м?
Ответ
Довольно часто при решении таких задач рассуждают так: гусеница за 24 часа поднимается на высоту 5 м без 2 м, то есть – на 3 м. Следовательно, высоты 9 м она достигнет по истечении 3 суток – в среду в 6 часов утра.
Но этот ответ неверен: в конце вторых суток, то есть во вторник в 6 часов утра, гусеница окажется на высоте 6 м, но в этот же день, начиная с 6 часов утра, она до 18 часов может подняться еще на 5 м. Поэтому на высоте 9 м гусеница окажется во вторник в 13 часов 12 минут.
Условие
Отец пошел со своими сыновьями в лес за грибами. В лесу они разошлись в разные стороны и стали искать грибы. Через 30 минут отец сел под дерево отдохнуть и пересчитал найденные грибы: их оказалось 45 штук. Через несколько минут прибежали дети – ни один из них ничего не нашел.
Дети попросили отца дать им немного грибов. Он раздал им все свои грибы, затем он и сыновья снова разбрелись в разные стороны. После этого произошло следующее: один мальчик нашел 2 гриба, второй потерял 2 гриба, третий нашел еще столько же, сколько ему дал отец, а четвертый потерял половину полученных от отца грибов. Когда дети пришли домой, оказалось, что у всех них грибов поровну.
Сколько каждый из сыновей получил от отца грибов и сколько было у каждого, когда они пришли домой?
Ответ
Как видно из условия задачи, третьему сыну отец дал грибов меньше всего, поскольку он должен был набрать еще столько же грибов, чтобы сравняться с братьями. Для простоты представим, что третьему сыну отец дал одну горсть грибов. Тогда сколько же таких горстей он дал четвертому сыну? Третий мальчик принес домой две горсти, потому что сам нашел столько же грибов, сколько дал ему отец. Четвертый сын принес домой ровно столько же грибов, сколько и третий мальчик, то есть тоже две горсти. Но, дело в том, что половину своих грибов он потерял по дороге, значит, отец дал ему четыре горсти.
Первый сын принес домой две горсти, но из них 2 гриба он нашел сам. Получается, что отец дал ему две горсти без 2 грибов. Второй мальчик принес домой две горсти, но по дороге он потерял 2 гриба – значит, отец дал ему две горсти и еще два гриба.
Получается, что отец дал сыновьям одну горсть, четыре горсти, две горсти без 2 грибов и две горсти с 2 грибами, то есть всего девять полных горстей (в двух горстях не хватало 2 гриба, зато в двух других горстях было 2 лишних гриба).
Зная первоначальное количество грибов, которые собрал отец, можно сделать вывод, что в каждой горсти было по 5 грибов (45: 9 = 5).
Итак, третьему сыну отец дал одну горсть, то есть 5 грибов; четвертому – четыре горсти, то есть 5 х4 = 20 грибов; первому – две горсти без двух грибов, то есть (5 х2) – 2 = 8 грибов; второму – две горсти с 2 грибами, то есть (5 х2) + 2 = 12 грибов.
Условие
Через 13 лет сумма возрастов детей Ивана Ивановича будет 97.
Какая сумма возрастов детей Ивана Ивановича будет через 7 лет?
Ответ
Сумма возрастов составит 73 года.
Условие
Назовите четырехзначное число, в котором первая цифра – треть второй, третья – сумма первых двух, и последняя утроенная вторая?
Ответ
Это число 1349.
Поставьте вместо звездочек знаки плюс и минус между цифрами так, чтобы получилось верное выражение: 0 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 = -1.
Ответ
Знаки плюс и минус следует поставить следующим образом: 0 + 1 + 2–3 – 4 + 5 + 6–7 – 8 + 9 = -1.
Условие
Штирлиц должен передать в Центр набор из четырех секретных натуральных чисел А, В, С, D. Для большей секретности он отправил набор чисел А + В, А + С, А + D, В + С, В + D неизвестно в каком порядке.
Подсказка: (A + C) + (B + D) = (A + D) + (B + C).
Центр, получив от Штирлица числа 13, 15, 16, 20, 22, расшифровал сообщение и нашел требуемый набор из четырех секретных натуральных чисел. Какие числа Штирлиц должен был передать в Центр?
Читать дальше
Конец ознакомительного отрывка
Купить книгу