Высокая электропроводность металлов также обусловлена "коллективизированными" электронами. В "нейтральном" металле они перемещаются по всем направлениям равномерно, но при подключении к источнику электроэнергии их движение становится направленным к положительному полюсу и скорость возрастает. По сравнению с веществами, не имеющими свободных электронов, проводимость металлов больше в 1025 раз. Наилучшей проводимостью обладают серебро, медь, золото. Платиноиды им уступают, но у них самое низкое значение величины удельного электросопротивления.
Способность металлов проводить теплоту при нагревании пропорциональна их электропроводности, потому что тепло тоже в основном передается электронной средой. У неметаллов, в которых тепло распространяется лишь колебанием ионов и атомов кристаллической решетки, теплопроводность в тысячу раз ниже. При нагреве возрастают колебательные движения ионов и соответственно затрудняется движение "коллективизированных" электронов. Это приводит к росту электрического сопротивления (у платиноидов оно возрастает в 3-5 раз при температурах, превышающих 1200° С). С повышением температуры теплопроводность снижается у всех платиновых металлов, за исключением самой платины (объяснение этому еще не найдено).
Энергией межатомных связей определяется тугоплавкость металлов качество, необычайно важное для современной техники, работающей в условиях высоких температур: головные части ракет, пробивающие плотные слои атмосферы, сопла ракетных двигателей и газовых турбин и т. д. Чем выше температура, тем сильнее раскачивается кристаллическая решетка, и металлы, имеющие, например, гексагональное строение, расширяясь резко неодинаково по различным направлениям, быстро разрушаются. Среди металлов наиболее устойчивой, кубической структуры самые выносливые те, у кого энергично работают электроны с уровня d. Чемпион по тугоплавкости-вольфрам (3380° С), но он не жаростоек. Уже при 700° С вольфрам начинает "потеть", покрывающая изделия прочная пленка его окисла улетучивается.
Поэтому он чемпион лишь в условиях вакуума или в атмосфере инертных газов, а во всех более трудных условиях незаменимы платиноиды.
Долгое время металлы удавалось сопоставить только по их физическим свойствам (плотность, твердость, магнитность и т. д.). Этого недостаточно, чтобы предвидеть их поведение при различных химических процессах. Разработать объективный критерий для сопоставления "силы" металлов, их активности, удалось харьковскому профессору Н. II. Бекетову. В 1865 году он опубликовал i "Исследования над явлением вытеснения одних элементов другими", в которых приведены результаты воздействия водорода на соли различных металлов, что позволило построить "вытеснительный ряд" по скорости и направленности процесса (теперь его называют "электрохимическим рядом напряжении", последовательность в котором определяется величиной энергии, необходимой, чтобы оторвать от атома один электрон). По трудности этого отрыва платина вместе с золотом стоят на самой высокой ступени. Бекетов присудил платине "пальму первенства" как сочетающей в себе химическую стойкость золота, тепло- и электропроводность серебра и превосходящей их по механической прочности и жаростойкости.
Познание строения вещества несколько прояснило причины "магического" воздействия катализаторов. Установлено, что для них типична разнообразная конфигурация кристаллов, ступенчатость их строения, расположение атомов не только на плоских гранях, но и на ребрах, где они окружены меньшим числом соседей и способны взаимодействовать особенно энергично. Как показали специальные исследования, у платины, например, активность атомов, расположенных на ребрах, в 60 раз выше, чем у тех, что находятся на гранях.
Благодаря высокой энергии поверхностных электронов, катализаторы при соприкосновении с другими веществами вступают в мгновенные взаимодействия, разрывают их молекулы и тут же восстанавливают свой состав (такие взаимодействия называют промежуточными).
Каталитические свойства наиболее ярко проявлены у d-элементов; среди них платина резко выделяется широтой энергетического спектра атомов и разнообразием их позиций, что и определяет се замечательную активность при самых разнообразных процессах.
У многих других катализаторов, в том числе и у платиноидов, эти качества проявлены более узко, что и обусловливает избирательность их каталитического воздействия.
Читать дальше