Строение атомов объясняет загадочную особенность рутения, выявленную еще Клаусом. Оказалось, что по разнообразию валентности рутений - чемпион. Известны соединения, в которых она равна нулю- Ru(CO)n, единице-Ru(CO)nBr, двум, трем, четырем-RuO2 (это наиболее распространенный вид соединений), а также пяти... и т. д. до восьми - RuO4. Но и этими - девятью! валентностями его способность, как оказалось, не ограничена. Клаусом были получены соединения, строение которых не удавалось объяснить обычными представлениями о валентности.
В конце прошлого века швейцарский химик А. Вернер, развив представления Клауса, создал основы теории комплексных соединений, в которых центральное место занимает атом металла-рутения, платины и других "склонных к комплексообразованию", способных крепко удерживать не только отдельные атомы, но и лиганды - различные их соединения (радикалы, молекулы неорганические и органические). Строение таких комплексов определяется координационным числом, отражающим, какое количество лиганд центральный атом может удержать.
Представления Вернера получили обоснование и блестящее развитие в трудах Льва Александровича Чугаева. Он создал много комплексных соединений платины, палладия, никеля и установил, что все они по своей структуре аналогичны органическим соединениям. Стереохимическими построениями он выявил закономерность расположения лиганд в пространстве и обосновал "правило циклов", позволяющее целенаправленно создавать наиболее устойчивые комплексы.
В дальнейшем развитии химии комплексных соединений очень велика роль академика Ильи Ильича Черняева и многих других советских исследователей (Ю.Н.Голованова, А. А. Гринберга, О. Е. Звягинцева, Б. Г. Карпова, В. В. Либединского, Н. К. Пшеницына, Н. М. Синицына, С. М. Старостина, П. И. Рожкова, Э. X. Фрицмана ...). Они не только усовершенствовали методы получения платиновых металлов, но и создали сотни их соединений, не существующих в природе, расширив тем самым возможности химии и техники. Глубоко разработана ими теория комплексных соединений. Установлено, что платиновые металлы - лучшие комплексообразователи, вступающие в сложные связи - ковалентные, дативные, в которых участвуют не одна, а несколько пар электронов. Причина этого - незастроенность уровня d, она особо резко выражена у рутения, что и определяет его "чемпионство" (уже получены нитрозосоединения рутения с восемнадцатиэлектронной конфигурацией молекул, обладающие уникальной термической и химической стойкостью). Имеют важное применение и комплексные соединения родня, но на первом месте и по количеству (их сотни), и по практическому значению комплексы, основу которых составляет платина.
Значение комплексных соединений в науке и технике так велико, что к числу важнейших "заслуг" платиноидов надо в один ряд с открытием периодического закона и явлений катализа поставить и координационную химию.
С помощью рентгеновских, электронных и других способов проникновения в глубь вещества установлено, что многие свойства обусловлены не особенностями отдельных атомов, а строением их совокупности - кристаллов. Они возникают под воздействием сил связи между атомами и характерны расположением их в определенном порядке, который неодинаков по разным направлениям. Чем интенсивнее эти силы, тем плотнее соприкасаются атомы. Самая плотная их упаковка достигается при кубической гранецентрированной структуре, где каждый атом окружен 12 ближайшими соседями-восемь атомов расположены в вершинах куба и еще шесть по одному в центре каждой его грани. Такое строение имеют платина, иридий, палладий, родий, а также золото, серебро, свинец и некоторые другие металлы. Рутений и осмий обладают менее совершенной гексагональной структурой, что и обусловливает меньшее их по сравнению с другими членами семьи "благородство".
Атомы металлов, если их сравнивать с атомами других элементов, обладают наибольшей силой связи. Вследствие этого они сближены так, что их внешние оболочки перекрывают друг друга. Это облегчает отрыв валентных электронов и превращение в узлах кристаллической решетки нейтральных атомов в положительно заряженные ионы. Оторвавшиеся электроны мчатся с непостижимой скоростью (20 000 км/сек), бомбят ионы, превращая их на миг в атомы и снова ускользая. Непрерывный обмен "коллективизированными" электронами обусловливает пластичность металлов. При относительном перемещении ионов связь их с такими электронами не ослабевает, и поэтому изменение формы тела происходит без разрушения. Платина в этом отношении чемпион, предел, до которого может быть растянута ее нить, еще не установлен.
Читать дальше