неизвестен Автор - Курс общей астрономии

Здесь есть возможность читать онлайн «неизвестен Автор - Курс общей астрономии» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Домоводство, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Курс общей астрономии: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Курс общей астрономии»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Курс общей астрономии — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Курс общей астрономии», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для светила, находящегося в момент наблюдения в зените, суточный параллакс равен нулю. Если светило М наблюдается на горизонте, то суточный параллакс его принимает максимальное значение и называется горизонтальным параллаксом р. Из соотношения между сторонами и углами треугольников ТОМ' и ТОМ (рис. 20) имеем

и Отсюда получаем sin р' = sin p sin г'. Горизонтальный параллакс у всех тел Солнечной системы - величина небольшая (у Луны в среднем р = 57', у Солнца р = 8",79, у планет меньше 1’). Поэтому синусы углов р и р' в последней формуле можно заменить самими углами и написать

p' = p sin z'.(1.40)

Вследствие суточного параллакса светило кажется нам ниже над горизонтом, чем это было бы, если бы наблюдение проводилось из центра Земли; при этом влияние параллакса на высоту светила пропорционально синусу зенитного расстояния, а максимальное его значение равно горизонтальному параллаксу p. Так как Земля имеет форму сфероида, то во избежание разногласий в определении горизонтальных параллаксов необходимо вычислять их значения для определенного радиуса Земли. За такой радиус принят экваториальный радиус Земли R0 = 6378 км, а горизонтальные параллаксы, вычисленные для него, называются горизонтальными экваториальными параллаксами р0 . Именно эти параллаксы тел Солнечной системы приводятся во всех справочных пособиях.

§ 32. Вычисление моментов времени и азимутов восхода и захода светил

Часовой угол светила определяется из первой формулы (1.37), а именно:

(1.41)

Если какая-нибудь точка небесного свода восходит или заходит, то она находится на горизонте и, следовательно, ее видимое зенитное расстояние z'90 = 90°. Ее истинное зенитное расстояние z в этот момент вследствие рефракции (см. § 30) будет больше видимого на величину r = 35'. Суточный параллакс понижает светило над горизонтом (см. § 31), т. е. увеличивает видимое зенитное расстояние z' на величину горизонтального параллакса р. Следовательно, истинное зенитное расстояние точки в момент ее восхода или захода z = z' + r90 - p = 90° + r90 - р. Кроме того, для Солнца и Луны, имеющих заметные размеры, координаты относятся к центру их видимого диска, а восходом (или заходом) этих светил считается момент появления (пли исчезновения) на горизонте верхней точки края диска. Следовательно, истинное зенитное расстояние центра диска этих светил в момент восхода или захода будет больше зенитного расстояния верхней точки края диска на величину видимого углового радиуса R диска. (У Солнца и Луны их видимые угловые радиусы приблизительно одинаковы и в среднем равны 16’.) Таким образом, при вычислении часового угла светила в момент его восхода и захода в формуле (1.41), в самом общем случае, z = 90° + r90 - p + R, и она напишется тогда в следующем виде:

(1.42)

По формуле (1.42) часовые углы восхода и захода вычисляются только для Луны. В этом случае RR = 16’, рR = 57’ и r90 = 35'. и формула (1.42) принимает вид При вычислении часовых углов восхода и захода Солнца его горизонтальным параллаксом можно пренебречь, и при R ¤ = 16' и r90 = 35' формула (1.42) принимает вид

(1.43)

Для звезд и планет можно пренебречь также и их видимыми радиусами и вычислять часовые углы восхода и захода по формуле Наконец, если пренебречь и рефракцией, то часовой угол восхода и захода вычисляется по формуле

cos t = - tg j tg d .(1.44)

Каждое из приведенных уравнений дает два значения часового угла: t1 = t и t2 = t. Положительное значение соответствует заходу, отрицательное - восходу светила. Местное звездное время восхода и захода, согласно формуле (1.15), получается таким: sвосх = a - t.

sзах = a + t. Затем можно вычислить моменты восхода и захода светила по местному среднему солнечному времени (см. § 23) и по декретному времени (см. § 24). Если вычисляется восход и заход Солнца, то нет необходимости вычислять звездное время явлений, так как, увеличив часовые углы t1 и t2 на 12h, мы сразу получаем моменты по местному истинному солнечному времени Т¤ = t¤ + 12h. Тогда местное среднее время

Tвосх = 12h - t¤ + h,

Тзах = 12h + t¤ + h, где h - уравнение времени (см. § 22), которое берется, так же как a и d Солнца, из Астрономического Ежегодника. Азимуты точек восхода и захода светил (без учета рефракции, параллакса и углового радиуса) получим, если в первой формуле (1.36) положим z = 90°; тогда cos z = 0, sin z =1 и

(1.45)

По формуле (1.45) получаем два значения азимута: А1 = A и A2 = 360° - A. Первое значение является азимутом точки захода, второе - азимутом точки восхода светила. Представим теперь формулы (1.45) и (1.44) в виде

и

(1.46)

Так как косинус не может быть больше 1, то из этих формул следует, что восход и заход светила возможны только при условии | d | < (90° - | j | ) [см. формулу (1.4) § 13].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Курс общей астрономии»

Представляем Вашему вниманию похожие книги на «Курс общей астрономии» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Курс общей астрономии»

Обсуждение, отзывы о книге «Курс общей астрономии» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x