1. Заметно повышаются результаты наиболее сильных учащихся и практически не меняются результаты основной массы учащихся.
Вывод: есть смысл перенести экспериментальные исследования в специализированные школы и поставить под особый контроль уровень загруженности учащихся во внеурочное время.
2. Наблюдается общий подъем результатов у подавляющего большинства учащихся.
Вывод: рамки эксперимента следует расширить.
3. Качественно улучшаются результаты работы наиболее слабых учащихся при сохранении высоких результатов у лучших ребят.
Вывод: провести контрольный эксперимент и рекомендовать проверку экспериментальных приемов в условиях работы вспомогательных школ.
4. При общем подъеме результатов учебной работы среди средних и слабых учащихся наибольших успехов достигают лучшие учащиеся.
Вывод: оптимальный вариант. Экспериментальную методику можно рекомендовать и распространять во всех школах данного типа.
Разумеется, этими четырьмя результатами и выводами не ограничиваются все возможные варианты, оценку которым могут дать только компетентные научные коллективы и довести до сведения всех учителей-экспериментаторов и научно-поисковых групп для утверждения статуса их исследовательской работы.
Не менее важен и подбор упражнений для сопоставительных контрольных работ. Знания учащихся необходимо проверять не по отдельным темам или разделам, а по всему изученному курсу. Более того, содержание сопоставительных контрольных работ должно быть таким же глубоким и всеохватным, какими являются материалы экзаменационных работ. Это, с одной стороны, позволит исключить и необъективность, и тенденциозность, и предвзятость при оценке возможности применяемой методики, а с другой - будет соответствовать особенностям и целям эксперимента. В подкрепление сказанного приведем варианты контрольной, предложенной весной 1986 г. ученикам экспериментального IV класса после освоения ими за один учебный год курсов математики IV и V классов. Речь идет о том самом классе, где каждый третий еще осенью 1985 г. читал по слогам.
I вариант.
- От города до колхоза 24 км. Из города в колхоз выехал грузовик, который проходит 1 км за 2-мин. Через 15 мин из колхоза в город выехал велосипедист со скоростью вдвое меньшей скорости грузовика. Через сколько времени после своего выезда велосипедист встретит грузовик?
- Пионерский отряд в первый день прошел 5/14; всего пути, во второй день 7/18 оставшегося пути, а в третий день остальные 22 км. Каков весь путь отряда?
- Колхоз должен был засеять 840 га, но он перевыполнил план на 7,5 %. Другой колхоз засеял на 33 га больше, чем первый, но его план 900 га. На сколько процентов перевыполнил свой план второй колхоз?
- На укладке газопровода три бригады заработали 1308 рублей. В первой бригаде было 5 человек, и работала она 9 дней, во второй бригаде было 6 человек, и работала она 8 дней, а в третьей бригаде было 4 человека, и работала она 50% того времени, которое работала вторая бригада. Сколько рублей получила каждая бригада в отдельности?
- Найти периметр и площадь фигуры, размеры которой даны на чертеже в метрах.
II вариант.
- После реконструкции завод увеличил выпуск продукции на 30%. Спустя некоторое время выпуск продукции увеличился еще на 10%, а после замены оборудования увеличился еще на 15%. На сколько процентов увеличился первоначальный выпуск продукции?
- Сумма цифр двузначного числа равна 14. Если к этому числу прибавить 36, то получится новое число, записанное теми же цифрами, но в обратном порядке. Найти число.
- У треугольника координаты вершин (-3; 1), (-1; 4) и (2; 3). Построить симметричный ему треугольник относительно оси, проходящей через точки с координатами (-8; -2) и (-7; -2).
- Я задумал число, увеличил его в полтора раза, к произведению прибавил 4,4, полученную сумму разделил на 3-, из полученного частного вычел 1,4 и получил 0,6. Найти задуманное число.
- Ученик может выполнить работу за 16 ч, мастер - за 12 ч. Сначала в течение 4 ч работал ученик, затем 2 ч работал мастер. За сколько часов они выполнят оставшуюся работу, работая вместе?
(Специалистам-математикам нетрудно заметить, что в этих двух вариантах учащимся предложены задачи с цифровой вариацией из сборника М. И. Сканави No 13 005 и 13 030.)
III вариант.
- В треугольнике один из углов на 20° больше второго, а третий на 44° меньше второго. Найти углы треугольника.
- Сумма двух чисел 70. Если большее из этих чисел разделить на меньшее, то в частном получится 5, а в остатке 4. Найти эти числа.
Читать дальше