1 ...6 7 8 10 11 12 ...273 И опять Ада взялась за изучение математики для того, чтобы обрести равновесие, и попыталась упросить Бэббиджа стать ее учителем. Она пишет: «Мой способ обучения необычен, и я думаю, что только исключительному человеку удастся научить меня». Не то из-за опиатов, не то из-за ее наследственности, не то из-за того и другого вместе, но она сформировала несколько преувеличенное мнение о своих талантах и начала считать себя гением. В своем письме к Бэббиджу она написала: «Не считайте меня тщеславной… но мне кажется, что я способна продвинуться в этом стремлении так далеко, как захочу. И я спрашиваю себя: если есть настолько определенное желание, можно даже сказать — почти страсть, какая есть у меня для достижения этой цели, не всегда ли это свидетельствует в какой-то степени о природной гениальности» [27] Письмо Ады Чарльзу Бэббиджу, ноябрь 1839 г.
.
Бэббидж отклонил просьбу Ады, что было, вероятно, мудрым решением. Это сохранило их дружбу и, что еще более важно, — их сотрудничество. А она смогла вместо него найти первоклассного учителя математики — Огастеса де Моргана, терпеливого и вежливого человека, который был одним из создателей символической логики. Он выдвинул гипотезу (которую Ада однажды применит и сделает из нее важные выводы), состоявшую в том, что алгебраическое уравнение может применяться не только к числам. Соотношения между символами (например, a + b = b + а) могут быть частью логики, которая оперирует нечисловыми объектами.
Ада никогда не была великим математиком, как утверждают ее поклонники, но она была прилежной ученицей и сумела понять основы математического анализа. Обладая художественным восприятием, она любила визуализировать меняющиеся графики и траектории, описываемые уравнениями. Де Морган рекомендовал ей сосредоточиться на правилах решения уравнении, но она охотнее обсуждала основные понятия. Точно так же было и с геометрией: она часто искала визуальные способы решения задач, например, таких как нахождение фигур, на которые делят сферу нарисованные на ней пересекающиеся окружности.
Способность Ады оценить красоту математики — дар, которым многие люди, в том числе и считающие себя интеллектуалами, не обладают. Она поняла, что математика была великолепным — временами даже поэтическим — языком, описывающим гармонию Вселенной. Несмотря на усилия матери, она оставалась дочерью своего отца, и восприятие у нее было поэтическое. Это позволяло ей видеть в уравнении мазок, который наложен на картину физического великолепия природы, точно так же как она могла представить в своем воображении «винноцветное море» или женщину, которая «идет во всей красе, как ночь». Но в математике она видела еще более глубокую — духовную привлекательность. Математика «представляет собой единственный язык, с помощью которого мы можем адекватно описать важнейшие черты мира природы, — писала она, — и это позволяет нам создать представление об изменении взаимоотношений», которые происходят в мире. Это «инструмент, с помощью которого слабый человеческий разум лучше всего может понять работу Творца».
Эта способность применять воображение в научных изысканиях характерна как для эпохи промышленной революции, так и для эры компьютерной революции, для которой Аде суждено было стать иконой. Как она сказала Бэббиджу, она была в состоянии понять связь между поэзией и анализом и в этом превзошла талантом своего отца. Она писала: «Я не верю, что мой отец был (или когда-либо мог бы быть) таким поэтом, каким я буду аналитиком, ибо во мне оба таланта живут одновременно» [28] Письмо Ады Чарльзу Бэббиджу 30 июля 1843 г.
.
Она сказала своей матери, что ее возобновившиеся занятия математикой развили в ней творческое начало и привели к «невероятному развитию воображения, так что у меня нет никаких сомнений в том, что если я буду продолжать занятия, то в свое время стану поэтом» [29] Письмо Ады леди Байрон 11 января 1841 г.
. Идея использования воображения, а в особенности применительно к технологии, интриговала ее. «Что такое воображение? — спрашивает она в своем эссе 1841 года. — Это объединяющий дар.
Оно помогает представить вещи, факты, идеи, концепции в новых, оригинальных, бесконечных, всегда меняющихся комбинациях… Это оно проникает в невидимые миры вокруг нас, в миры науки» [30] Toole, Ada, the Enchantress of Numbers, 136.
.
К тому времени Ада поверила, что она обладает особенными, даже сверхъестественными способностями, которые, как она выразилась, позволяют «интуитивно воспринимать скрытые вещи». Ее преувеличенное представление о своих талантах приводило к тому, что она ставила себе цели, необычные для женщины-аристократки и матери в ту раннюю викторианскую эпоху. «Я считаю себя обладательницей уникальной комбинации качеств, соединенных во мне в нужной пропорции и дающих мне преимущество в поисках скрытых свойств природы, — поясняла она в письме к своей матери в 1841 году. — Я могу свести лучи от разных частей Вселенной в один огромный фокус» [31] Письмо Ады леди Байрон 6 февраля 1841 г.; Stein, Ada, 87.
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу