Она написала, что это стало возможным благодаря тому, что в конструкцию машины были «внедрены принципы, которые Жаккард разработал, чтобы ткать парчовые ткани с самыми сложными узорами, а именно — управление рисунком с помощью перфокарт». Ада поняла значение этого даже лучше, чем Бэббидж [45] Письмо Чарльза Бэббиджа Аде 1843 г., в: Toole, Ada, the Enchantress of Numbers, 197.
. Это означало, что машина может быть подобна компьютеру, который мы сейчас воспринимаем как данность, то есть может быть машиной, которая не просто выполняет конкретную арифметическую задачу, а является машиной общего назначения. Она объясняет: «Мы вышли за границы арифметики в тот момент, когда возникла идея применения карт. Аналитическая машина выбивается из ряда простых „расчетных машин“. Она занимает совершенно отдельную позицию. Сконструировав устройство, оперирующее общими символами, которые могут образовывать неограниченное количество комбинаций, мы установили связь между операциями с материальными объектами и абстрактными мыслительными процессами» [46] Все цитаты из текстов Менабреа и «Примечаний» Лавлейс приводятся по Menabrea, Sketch of the Analytical Engine.
.
Эти предложения звучат несколько экзальтированно, но их стоит прочитать внимательно. Они передают сущность современных компьютеров. И Ада изложила свою мысль поэтическим слогом: «Аналитическая машина плетет алгебраические узоры так же, как ткацкий станок Жаккарда ткет цветы и листья». Когда Бэббидж прочитал «Примечание А», он пришел в восхищение, не внес никаких изменений в текст и написал ей: «Умоляю вас ничего не менять в нем».
Второе примечание Ады возникло из описания общего назначения машины. Она поняла, что ее функции не должны ограничиваться математикой и числами. Обратившись к обобщению де Морганом алгебры на формальную логику, она заметила, что такое устройство, как аналитическая машина, может хранить, управлять, обрабатывать и работать с некоторыми нечисловыми объектами, которые могут быть выражены в символах: словами, логическими операторами, музыкальными звуками и любыми другими, которые мы смогли бы описать символами.
Чтобы объяснить эту идею, она точно определила понятие операции: «Желательно пояснить, что под словом „операция“ мы понимаем любой процесс, который изменяет взаимное отношение двух или более вещей, каким бы это отношение ни было». Операция такой машины, отметила она, может изменить отношение не только между числами, но и между любыми символами, которые логически связаны между собой. «Она может манипулировать другими объектами, а не только числами, если найти объекты, фундаментальные соотношения между которыми могут быть выражены с помощью операций, описываемых абстрактной наукой». Аналитическая машина теоретически может даже выполнять операции с музыкальными звуками: «Допустим, например, что фундаментальные соотношения высоты звуков в науке о гармонии и музыкальной композиции возможно описать с помощью символов, тогда машина может составить искусное музыкальное произведение любой степени сложности». Это была Адина концепция «поэтической науки» в чистом виде — искусное и научно обоснованное музыкальное произведение, составленное машиной! Ее отец от такой идеи содрогнулся бы.
Эта концепция станет основной для цифровой эпохи: любой фрагмент контента, данных или информации: музыка, текст, изображения, числа, символы, звуки, видеоконтент — все это может быть записано в цифровом виде, и машина может этими символами манипулировать. Даже Бэббидж не смог понять это в полной мере — он ограничился операциями с математическими объектами. Но Ада поняла, что цифры, записанные с помощью шестеренок, могут обозначать и другие объекты, а не только математические величины. По существу она сделала концептуальный рывок, мысленно перейдя от машин, которые были просто калькуляторами, к тем, которые мы теперь называем компьютерами. Дорон Суэйд, занимающийся историей компьютеров и специализирующийся на изучении машин Бэббиджа, считает, что этот концептуальный скачок является одним из главных исторических наследий Ады. Он отметил: «Если мы поищем и внимательно исследуем историю этого концептуального скачка, то увидим, что именно Ада в своей публикации 1843 года совершила его» [47] Его фраза из фильма Ada Byron Lovelace: To Dream Tomorrow (2003).
.
Третий вклад Ады состоял в том, что в своем заключительном «Примечании G» она подробно, шаг за шагом объяснила, как работает то, что мы сейчас называем компьютерной программой или алгоритмом. Для примера она написала программу вычисления чисел Бернулли [48] Названы в честь швейцарского математика XVII века Якоба Бернулли, который изучал суммы одинаковых степеней натуральных чисел. Числа Бернулли играют важную роль в теории чисел, математическом анализе и дифференциальной топологии. — Прим. автора.
— чрезвычайно сложно устроенного бесконечного ряда чисел, которые в том или ином виде играют важную роль в теории чисел.
Читать дальше
Конец ознакомительного отрывка
Купить книгу