Анатолий Фоменко - Истину можно вычислить.

Здесь есть возможность читать онлайн «Анатолий Фоменко - Истину можно вычислить.» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2007, ISBN: 2007, Издательство: ООО «Издательство Астрель», Жанр: Публицистика, История, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Истину можно вычислить.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Истину можно вычислить.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Первоначально, в XVI–XVII веках, историческая хронология была разделом прикладной математики. Однако математика и астрономия того времени были еще недостаточно разработаны и поэтому при определении дат событий древности были допущены серьезные ошибки. Сегодня историческая хронология возвращается в лоно современной математики. Это позволяет исправить грубые ошибки хронологов XVI–XVII веков и построить правильное здание истории. В настоящей книге излагаются новые эмпирико-статистические методы датирования древних событий, предложенные и разработанные А.Т. Фоменко.
Книга не предполагает от читателя специальных знаний и предназначена для всех, кто интересуется проблемами всемирной истории.

Истину можно вычислить. — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Истину можно вычислить.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

[a i— |a i— b i| — h(a i), а i+ |а i— b i| + h(a i)].

Ясно, что параллелепипед P'(а, b) целиком лежит внутри большого параллелепипеда P(а, b), см. 20. Диагональю этого большого параллелепипеда является вектор а — b + h(а), где вектор h(а) выглядит так:

h(а) = (h(а 1), …, h(a k)).

Его можно назвать ВЕКТОРОМ ОШИБОК ЛЕТОПИСЦЕВ.

Итак, мы смоделировали все три основные ошибки, делавшиеся летописцами при подсчете ими длительностей правлений царей. В качестве окончательного коэффициента с(а, b), измеряющего близость или удаленность друг от друга двух династий а и b, мы возьмем следующее число:

Ясно что число са b является интегралом функции плотности zx по - фото 27

Ясно, что число с(а, b) является интегралом функции плотности z(x) по параллелепипеду P(а, b). На рис. 22 число с(а, b) условно изображается объемом призмы, имеющей в качестве основания параллелепипед P(а, b) и ограниченной сверху графиком функции z. Число с(а, b) можно, при желании, интерпретировать как вероятность того, что случайный «династический вектор», распределенный в пространстве R kс функцией плотности z, оказался на расстоянии от точки а, не превышающем расстояния между точками а и b, с учетом ошибки h(а). Другими словами, случайный «династический» вектор, распределенный с функцией плотности, попал в окрестность P(а, b) точки а, имеющую «радиус» а — b + h(а).

Рис 22 Представление коэффициента са b в биде объема примы то есть - фото 28

Рис. 22. Представление коэффициента с(а, b) в биде объема «примы», то есть интеграла от функции z(x) по параллелепипеду Р(а, b).

Из предыдущего видно, что роль династий а и b при подсчете коэффициента с(а, b) неодинакова. Династия а была помещена в центр параллелепипеда P(а, b), а династия b определяла его диагональ. Конечно, можно было «уравнять в правах» династии а и b, поступив по аналогии с предыдущим коэффициентом p(X, Y). То есть можно поменять клестами династии а и b, вычислить коэффициент с(b, а), а затем взять среднее арифметическое чисел с(а, b) и с(b, а). Мы этого не делали по двум причинам. Во-первых, показали конкретные эксперименты, замена коэффициента с(а, b) на его «симметризацию» фактически не меняет получающихся результатов. Во-вторых, в некоторых случаях династии a и b действительно могут быть неравноправными в том смысле, что одна из них может быть оригиналом, а вторая — всего лишь ее дубликатом, фантомным отражением. В этом случае естественно помещать в центр параллелепипеда династию а, претендующую на роль оригинала, а «фантомное отражение» b рассматривать как «возмущение» династии а. Возникающие различия между коэффициентами с(а, b) и с(b, а) хотя и невелики, но могут послужить полезным материалом для дальнейших, более тонких исследований, которых мы пока не проводили.

2.3. Уточнение модели и вычислительный эксперимент

Сформулированный выше принцип малых искажений проверялся на основе коэффициента с(а, b).

1) Для проверки были использованы хронологические таблицы Ж. Блера [76], содержащие практически все основные хронологические данные, в скалигеровской версии, из истории Европы, Средиземноморья, Ближнего Востока, Египта, Азии от якобы 4000 года до н. э. до 1800 года н. э. Эти данные были затем дополнены списками правителей и их правлений, взятых нами из других источников и монографий, как средневековых, так и современных. Упомянем здесь, например, следующие книги: Ш. Бемон, Г. Моно [64], Э. Бикерман [72], Г. Бругш [99], А.А. Васильев [120], Ф. Грегоровиус [195], [196], Д. Эссад [240], Ш. Диль [247], Кольрауш [415], С.Г. Лозинский [492], Б. Низе [579], В.С. Сергеев [766], [767], Chronologie egipticnnc [1069], F.K. Ginzel [1155], LIdeler [1205], L’art de verifier les dates faites historiques [1236], T. Mommsen [1275], Isaac Newton [1298], D. Petavius [1337], I. Scaliger [1387].

2) Как мы уже отмечали, под династией мы понимаем последовательность фактических правителей страны, безотносительно к их титулатуре и родственным связям. В дальнейшем мы иногда будем, для краткости, условно называть их царями.

3) Из-за наличия соправителей иногда возникают трудности при расположении царей в ряд. Мы приняли простейший принцип упорядочения — по серединам правлений.

4) Последовательность чисел, выражающих длительности правлений всех правителей на протяжении всей истории данного государства (то есть длина последовательности априори не ограничивается), будем называть ДИНАСТИЧЕСКИМ ПОТОКОМ. Подпоследовательности, получающиеся отбрасыванием тех или иных СОПРАВИТЕЛЕЙ, назовем ДИНАСТИЧЕСКИМИ СТРУЯМИ. От каждой такой струи требуется, чтобы она была МОНОТОННОЙ, то есть, чтобы середины периодов правлений монотонно возрастали. Требуется также, чтобы династическая струя была ПОЛНОЙ, то есть, чтобы она без пропусков и разрывов покрывала весь исторический период, охваченный данным потоком. Перекрытия периодов правлений при этом допускаются.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Истину можно вычислить.»

Представляем Вашему вниманию похожие книги на «Истину можно вычислить.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Анатолий Фоменко - Дон Кихот или Иван Грозный
Анатолий Фоменко
Анатолий Фоменко - Крещение Руси
Анатолий Фоменко
Отзывы о книге «Истину можно вычислить.»

Обсуждение, отзывы о книге «Истину можно вычислить.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x