Над этим начали думать и говорить ещё со времён “неевклидовой ереси”, то есть со времён открытия и обоснования неевклидовой геометрии как полноценной альтернативы евклидовой ; но глубже, напористее и жарче всего, безусловно, – со времён Гильберта и Пуанкаре, то есть с конца ХIХ – начала ХХ века. С тех пор учёные спорщики разделились как бы на два непримиримых и враждебных друг другу лагеря – на аксиомофилов (сторонников Фреге, Рассела, Уайтхеда и Гильберта) и естествоиспытателей (сторонников Декарта, Кронекера, Пуанкаре). Одни яростно дуют в свою дуду, доказывая правильность своей позиции: чистоты, самодостаточности и независимости математики от других дисциплин, – другие – в свою: утверждают, что математика, прежде всего, это служанка-помощница естествознания; следствие, а не первопричина. И конца и края этим интеллектуальным околонаучным баталиям и склокам пока что не видно…
Сколь остро, злободневно и яростно до сих пор нешуточное противостояние между аксиомофилами и естествоиспытателями , породившее глобальный кризис современной точной науки, 4-ый по счёту (об этом читайте мою работу «Современная математика. Исток. Проблемы. Перспективы» ), свидетельствует такой, например, красноречивый факт. В конце ХХ века Международный математический союз выпустил невероятно ценную, на скромный авторский взгляд, книгу «Математика, её границы и перспективы» . Так вот, в этой книге содиректор Боннского математического института Ю.И.Манин (бывший профессор мехмата МГУ, член-корреспондент АН СССР и ученик гениального И.Р.Шафаревича) дал свои новые определения математики, математического образования и новую оценку стоящих перед математической дисциплиной задач – с высоты всех накопленных знаний, прошлых жарких дискуссий и споров.
«Математика, – согласно Манину, – это отрасль лингвистики или филологии, занимающаяся преобразованием конечных цепочек символов некоторого конечного алфавита в другие такие цепочки при помощи конечного числа “грамматических” правил»…
Расшифровывая свою мысль, Манин далее осознанно и ничтоже сумняся пишет, что никакое разумное правительство или сообщество не станет-де кормить людей, занимающихся тем переливанием из пустого в порожнее , к которому он, доктор физико-математических наук и без пяти минут академик, приравнивает все занятия математикой. Не слабо сказано, да?! «Ведь если в результате игры с символами и получается что-либо полезное, – язвительно заключает он, – то это просто означает, что оно содержалось уже в исходных предпосылках» . И это, напомним, пишется в конце ХХ века!
«Поэтому, – итожит Юрий Иванович главную мысль своей статьи, – математикам пришлось изобрести свой метод, как получать гранты, стипендии и тому подобное субсидирование своей науки: этот метод состоит в том, чтобы претендовать на открытия, которых не совершал (и к которым жонглирование цепочками символов и не может привести по самой своей природе) .
Но это претендование – не простое искусство, и чтобы обучать ему не испорченную ещё им молодёжь, служат… колледжи, университеты и факультеты, где именно и обучают искусству саморекламы и претенциозности. Это (по Манину) и составляет суть математического образования».
Одним словом, занятие теоретической или чистой математикой, – на закате лет был уже твёрдо убеждён бывший профессор МГУ, – не только не способствует ускорению какого-либо прогресса человечества, а наоборот, этот прогресс тормозит… И, может это и хорошо – как знать?! «Ведь, – с иронией замечает профессор-скептик в конце, – если бы умники, занимавшиеся проблемой Ферма, усовершенствовали вместо этого самолёты и автомобили, то вреда для человечества было бы куда больше!…» А так математические задачи (по Ю.И.Манину, опять-таки) служат именно этой цели торможения: «они-де отвлекают умных людей от более опасных занятий» …
Да, согласен, это, безусловно, крайняя сторона проблемы – заострённо-критическая и подчёркнуто-радикальная так сказать, подчёркнуто-скептическая. Но вот что пишет по тому же самому поводу (роль и значение математики в современном мiре) менее радикальный В.И.Арнольд, дружок и коллега манинский. Владимир Игоревич тоже был многолетним профессором математики в МГУ, действительным членом АН СССР (автор имел честь слушать его лекции на мехмате по обыкновенным дифференциальным уравнениям во второй половине 1970-х годов, неоднократно беседовать с ним, сдавать экзамены). Но в лихие 1990-е годы Владимир Игоревич укатил во Францию и работал там в Международном математическом союзе вице-президентом сначала, а потом – членом Исполнительного комитета (до августа 2002 года). Так вот, рассматривая работы, присылаемые на различные конкурсы, он с удивлением замечал (о чём и написал потом в книге «Что такое математика?») «что… огромное большинство опубликованных работ не заслуживало публикаций. В разных случаях у меня получались, в зависимости от критериев, немного разные статистики, но в среднем число напрасных публикаций оказывается б о льшим 90% (возможно, мировое среднее – 99%). Статьи были нужны прежде всего их авторам для трудоустройства и карьеры» …
Читать дальше