При химических реакциях, например когда взрывается порох, тротил или другое ВВ, энергии выделяется примерно в 10 миллионов раз меньше, чем при реакции ядерной, — в расчёте на равное количество инициируемого вещества. Именно из этого обстоятельства вытекает огромное преимущество ядерного оружия над обычным.
Первая советская атомная бомба весила около 5 тонн (как и первая американская) и имела мощность около 15 килотонн тротилового эквивалента (ТНТ) , то есть превосходила свой химический аналог в 3 тысячи раз. Не в 10 миллионов раз, как отмечалось выше, а в тысячи раз меньше.
Почему?
Дело в том, что в массивном корпусе атомной бомбы содержалось всего лишь 6 килограммов активного материала, который к тому же „сгорал“ далеко не полностью (в отличие от обычного ВВ с коэффициентом полезного действия, близким к 100 процентам) .
Вторая особенность деления состоит в том, что в результате распада тяжёлого ядра образуются новые нейтроны. Это принципиальное обстоятельство приводит к возможности цепной реакции — нарастающему экспоненциально потоку нейтронов.
Экспериментальным путём выяснили, что для реализации взрыва пригодными оказались нечётные изотопы урана и плутония (уран-235 , плутоний-239) . Другие элементы, в том числе уран-233 , более далёкие изотопы плутония, прочие трансураны, распространения не получили из-за технологических трудностей и высокой стоимости.
К слову сказать, в своё время возлагались большие надежды на кюрий-245 . Было высказано предположение, что у него уникальные ядерные свойства и можно сделать не то что бомбу, а чуть ли не атомную пулю. На реакторе добыли некоторое количество кюрия, определили его физические и ядерные константы. Иллюзии исчезли так же быстро, как и появились. Кюрий-245 по ядерным характеристикам не сильно отличался от плутония-239 , но превосходил последний по стоимости в десятки раз.
Уран-235 является изотопом природного урана, в котором его содержится всего 0,7 процента, остальные 99,3 — уран-238 . Известно несколько способов разделения изотопов: газодиффузионный, центробежный, лазерный, некоторые другие. В Советском Союзе наибольшее распространение получил центробежный. Он достиг очень высокого уровня совершенства. На его основе в настоящее время осуществляются поставки обогащённого урана для атомных станций внутри страны и на экспорт.
В бомбах использовался высокообогащённый уран (ВОУ) с концентрацией по урану-235 до 90 amp;ndash;95 процентов.
Плутоний-239 — искусственный изотоп, которого нет в недрах Земли. Его получают в действующих реакторах. Уран-238 при облучении захватывает нейтрон и затем через два amp;beta;-распада переходит в плутоний-239 . Одна тонкость: из плутония-239 путём последующего захвата нейтрона образуется плутоний-240 . В военном плутонии допустимое количество плутония-240 не должно составлять более 5 amp;ndash;6 процентов, поэтому „срок выдержки“ облучаемого материала в специальных реакторах исчисляется неделями, тогда как в энергетических реакторах АЭС тепловыделяющие элементы могут находиться годами. Жёсткие требования по плутонию-240 , прямым образом влияющие на стоимость военного плутония, обуславливаются инертностью плутония-240 по отношению к делению и сильно выраженным — из-за спонтанного деления — нейтронным фоном.
Есть ещё одна особенность плутония, доставляющая много хлопот конструкторам. Она связана с тем, что плутоний-239 обладает amp;alpha;-радиоактивностью с периодом полураспада около 24 тысяч лет. Энергетический (из реакторов АЭС) плутоний мало пригоден для военной техники также и потому, что в нём накапливаются длинные „хвосты“ трансурановых элементов, вплоть до плутония-244 . При этом чётные изотопы малопродуктивны, нечётные определяют большой тепловой эффект из-за сравнительно короткого периода распада.
Аналогом плутония-239 является уран-233 , также реакторного происхождения, но на основе тория. Торий-232 подхватывает нейтроны и также через два amp;beta;-распада обращается в уран-233 . Но и в этой технологии есть свои трудности (в первую очередь — повышенная гамма-радиоактивность), из-за чего сколько-нибудь заметного применения в военной технике уран-233 не получил.
* * *
Итак, мы установили: чтобы сделать бомбу, нужны высокообогащённый уран (ВОУ) или оружейный плутоний.
Вернемся, однако, к явлению, названному выше размножением нейтронов. И напомним, что нейтрон, испытывая многократные взаимодействия в расщепляющейся среде, может достигать её границы и исчезать. Ясно, что в бесконечной среде такого рода потерь нет. И наоборот: если размер рассматриваемой области (например , радиус делящегося плутониевого шара) сопоставим с длиной пробега нейтронов, их потери за счёт вылета становятся преобладающими.
Читать дальше