— 41,5 градуса от вертикали.
— Значит, разница в широтах между нами и Гринвичем — 12 градусов. Каждый моряк знает, что широта Гринвича — 51,5 градуса, значит, он легко найдёт нашу широту — 39,5 градуса северной широты.
— Здорово! — восхищённо сказал Андрей, а Галатея недоверчиво покачала головой и попросила принести географическую карту. Принесли карту Европы, и Галатея поползла — или поплыла? — по ней, пыхтя, как старый паровой буксир. Потом она спросила:
— А если бы мы находились не в Бельведере-Мариттимо, а в испанской Валенсии? Она расположена возле нулевой долготы, значит, Солнце в Лондоне и в Валенсии достигает максимальной высоты в одно время?
— Да, между этими городами существует лишь разница в широтах. Кстати, ты можешь определить по карте расстояние между Валенсией и Лондоном?
Галатея с помощью Андрея и линейки измерила расстояние между городами.
— 1335 километров!
— Отлично! — обрадовался Майкл.
— А вот теперь догадайтесь, как можно определить длину окружности Земли, зная, что между широтами Лондона и Валенсии разница в 12 градусов, а расстояние между этими городами 1335 километров? Такую задачку в своё время решил древнегреческий математик и астроном Эратосфен (276 г. до н.э. — 194 г. до н.э.) для двух египетских городов, расположенных примерно на одной долготе.
Дети задумались. Первым сообразил Андрей:
— 12 градусов — одна тридцатая окружности в 360 градусов! Значит, длина земной окружности в 30 раз больше, чем расстояние между Лондоном и Валенсией. Это будет… это будет 40 тысяч километров и ещё… ещё 50 километров!
Майкл восхитился:
— Прекрасный, очень точный ответ!
Галатея немедленно надулась на Андрея.
Майкл спросил:
— Ну, теперь понятно, как точные часы, которые ходят одинаково в разных точках мира, могут помочь определить широту и долготу? Если бы у меня были таблицы времени достижения максимальной высоты Солнца в Гринвиче каждый день, то я смог бы определить наши координаты без помощи Роберта. Таблицами, указывающими положение Солнца на год вперёд, пользовались моряки прошлых веков. Они замеряли время максимальной высоты Солнца в разных концах света, куда их заносила судьба. Но во времена Ньютона самые точные часы были снабжены механическим маятником. В условиях качки такие хронометры могли отставать на десять минут в сутки, и за долгие месяцы плавания ошибка в ходе часов накапливалась огромная.
Таким образом, чтобы определять долготу третьим способом, нужно было создать часы, которые выдерживали бы качку, перепад температур и точно работали и в жарких океанских тропиках, и в морях, покрытых льдами…
Парламент выслушал доклад Ньютона и постановил объявить награду в двадцать тысяч фунтов стерлингов за решение проблемы определения долготы в море с точностью до половины градуса. По тем временам это были огромные деньги — примерно пять миллионов нынешних долларов. За дело взялись и астрономы, и часовщики. Первые накапливали наблюдения за Луной и усовершенствовали теорию её движения, чтобы любой штурман, измерив положение Луны относительно звёзд и сверившись с лунными таблицами, смог определять положение корабля в открытом океане.
Часовщик Джон Харрисон (1693-1776), создавший первый морской хронометр. Иллюстрация из книги Х. Купера и Н. Хенбеста «История астрономии».
Над «проблемой долготы» трудился и Джон Флемстид, но он умер, не закончив дела. На посту королевского астронома его сменил Галлей. Новый наблюдатель Гринвичской обсерватории знал, что для усовершенствования теории движения Луны наш спутник нужно наблюдать как минимум восемнадцать лет. Галлею было тогда больше шестидесяти, и он понимал, что шансов закончить работу у него немного, но взялся за дело с энтузиазмом. Звёзды были благосклонны к астроному: Галлей наблюдал Луну до самой смерти, больше двадцати лет.
Леонард Эйлер (1707-1783) в России, Джеймс Брэдли (1693-1762) в Англии, Алекси Клеро (1713-1765) во Франции, Тобиас Майер (1723- 1762) в Германии, другие математики и астрономы подхватили эстафету и создали таблицы положения Луны и Солнца. Самые точные из них составил Майер на основе теории Эйлера. Жена Майера отправила его рукопись в Англию, в Совет по долготе. Астроном Невил Маскелайн (1732-1811) успешно испытал таблицы Майера в путешествии к острову Барбадос в Карибском море, после чего британский парламент премировал Эйлера и вдову Майера за астрономическое решение «проблемы долготы».
Читать дальше