Если бы четыре самые населенные страны, расположенные по Тихоокеанскому огненному кольцу, — США, Япония, Китай и Индонезия — сделали серьезные инвестиции в развитие своих геотермальных ресурсов, эти ресурсы вполне смогли бы стать одним из основных источников энергии в мире. Осторожные оценки возможности производства электричества с помощью геотермальной энергии показывают, что если только в США и Японии будут производить 240 000 мегаватт с помощью геотермальной энергии, легко представить мир, где к 2020 г. будут действовать тысячи работающих на геотермальной энергии электростанций, производящих 200 000 мегаватт электроэнергии. Это и составляет цель, поставленную в Плане Б [459] Данные по США взяты из работы: Tester et al., op. cit. note 68; данные по Японии, рассчитанные на основе предположения о том, что Усовершенствованные Геотермальные Системы смогут удвоить потенциал, оцениваемый 72 000 мегаватт, взяты из работы: Hirofumi Muraoka et al., “Assessment of Hydrothermal Resource Potentials in Japan 2008”, Abstract of Annual Meeting of Geothermal Research Society of Japan (Kanazawa, Japan: 2008); Hirofumi Muraoka, National Institute of Advanced Industrial Science and Technology, послание, отправленное по электронной почте Дж. Мэттью Роуни, Earth Policy Institute, 13 июля 2009 г.
.
БИОЛОГИЧЕСКИЕ ИСТОЧНИКИ ЭНЕРГИИ
По мере истощения запасов нефти и природного газа мир обращает все большее внимание на энергию, получаемую из растений. В дополнение к энергетическим культурам, о которых шла речь в главе 2, к таким источникам относятся отходы лесной промышленности, отходы сахарной промышленности, городской мусор, навоз домашнего скота, посадки быстрорастущих деревьев, остатки урожаев и отходы городских и дворовых насаждений. Все это можно использовать для производства электроэнергии, тепла или горючего для автомобилей.
Возможности использования биологических источников энергии ограниченны. Даже кукуруза, наиболее эффективная из всех зерновых культур, может преобразовать в электричество всего лишь 0,5 % солнечной энергии. Напротив, солнечные фотоэлектрические или тепловые электростанции преобразуют в электричество примерно 15 % солнечного света. В мире, испытывающем нехватку земли, энергетические культуры не могут конкурировать с электричеством, производимым с помощью энергии Солнца, тем более с электричеством, производимым с помощью ветра (такое производство намного эффективнее использует землю) [460] Stephen R. Gliessman, Agroecology: The Ecology of Sustainable Food Systems , 2nd ed. (Boca Raton, FL: CRC Press, 2006), p. 256; Pew Center on Global Climate Change, “Climate TechBook: Solar Power”, fact sheet (Arlington, VA: May 2009); Richter, Teske, and Short, op. cit. note 52, pp. 18–19.
.
В лесной и деревообрабатывающей промышленности, в том числе на лесопилках и бумажных комбинатах, отходы уже давно используют для производства электричества. Американские компании сжигают отходы деревообработки и для получения необходимого им производственного тепла, и для выработки электричества, которое компании продают местным электростанциям. На предприятиях США, главным образом благодаря сжиганию отходов деревообработки, производят почти 11 тыс. мегаватт электроэнергии [461] Ralph P. Overend and Anelia Milbrandt, “Potential Carbon Emissions Reductions from Biomass by 2030” — в книге: Kutscher, op. cit. note 51, pp. 112–130; DOE, op. cit. note 51, p. 24.
.
Кроме того, отходы деревообработки широко используют для производства тепла и электроэнергии (тепло обычно используют в системах центрального отопления). В Швеции почти половина всех жилых и коммерческих зданий подключена к системам центрального отопления. Еще недавно, в 1980 г., свыше 90 % тепла для этих систем получали за счет сжигания импортируемой нефти, но к 2007 г. нефть по большей части была вытеснена деревянной щепой и городским мусором [462] Swedish Energy Agency, Energy in Sweden 2008 (Eskilstuna, Sweden: December 2008), pp. 96, 111.
.
В США, в г. Сен-Пол в штате Миннесота (в городе проживают 275 тыс. жителей) модернизировать систему центрального отопления начали более 20 лет назад. В городе построили теплоэлектроцентраль, работающую на отходах древесины из городских парков, отходах деревообработки и древесине из других источников. ТЭЦ, потребляющая 250 тыс. тонн древесных отходов в год, ныне обеспечивает отоплением 80 % центра города — или более 1 кв. мили жилых и коммерческих площадей. Это позволило в основном отказаться от угля, что привело к сокращению выбросов углерода на 76 тыс. т в год. Также это привело к ликвидации отходов древесины, и в целом город приобрел устойчивый и возобновляемый источник тепла и электричества [463] Данные о населении взяты из публикации: Census Bureau, op. cit. note 1; Anders Rydaker, “Biomass for Electricity & Heat Production”, presentation at Bionergy North America 2007, Chicago, IL., 16 April 2007.
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу