Юрий Петров - Расследование и предупреждение техногенных катастроф. Научный детектив

Здесь есть возможность читать онлайн «Юрий Петров - Расследование и предупреждение техногенных катастроф. Научный детектив» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: Публицистика, История, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Расследование и предупреждение техногенных катастроф. Научный детектив: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Расследование и предупреждение техногенных катастроф. Научный детектив»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге рассказывается о знаменитых авариях и катастрофах, происходивших как в прошлом, так и в последние годы (таких как гибель подводной лодки "Курск", обрушение аквапарка "Трансвааль", катастрофы пассажирских самолетов и др.). Рассказано о методах расследования (и особенно — научного расследования) причин техногенных катастроф и о нелегкой борьбе за их предотвращение.

Расследование и предупреждение техногенных катастроф. Научный детектив — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Расследование и предупреждение техногенных катастроф. Научный детектив», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если при изменении исходных данных расчета (например — диаметра круглой колонны) на 1% результат расчета (например — критическая нагрузка колонны) изменится в два раза, то такой расчет, разумеется, никакого практического смысла не имеет. Здание, построенное по такому нелепому расчету, разумеется, обязательно рухнет. Корректность решений для практики важна, очень важна. Поэтому корректность всегда тщательно проверяют. Но в 1987 году в СПбГУ было открыто, что существуют особые объекты, в математических моделях которых корректность изменяется при эквивалентных преобразованиях. Для таких особых объектов традиционные методы проверки корректности не достоверны, и поэтому каждая встреча с особым объектом может обернуться аварией и даже катастрофой. Особые объекты были открыты так поздно потому, что они встречаются редко, но несмотря на свою редкость они очень опасны. Мы знаем, что и катастрофы происходят редко, не каждый день, но попасть в катастрофу никому не хочется.

Для того чтобы катастроф было меньше и наша жизнь стала безопаснее, надо уметь еще на стадии расчета и проектирования найти и выделить «особые» объекты. Об интереснейшей истории открытия особых объектов и разработки методов их распознавания и выделения мы далее расскажем, а пока приведем совсем простой числовой пример, который сразу прояснит суть дела. Никаких знаний, кроме школьной алгебры, для понимания примера не нужно.

Рассмотрим систему двух алгебраических уравнений:

(2λ 2+ 2)х = (1)

(λ 2+λ)χ = y (2)

с двумя переменными х и у и параметром λ.

Поскольку уравнения (1) и (2) однородны, то они, разумеется, имеют нулевое решение х = у = 0. Однако при некоторых значениях параметра λ система, состоящая из уравнений (1) и (2), имеет не нулевые решения. Значения параметра, при которых система однородных уравнений имеет не нулевые решения, называют собственными значениями (или собственными числами). Для системы (1) и (2) единственным собственным значением является λ = 1. Действительно, при подстановке в (1) и (2) значения λ = 1, система (1)-(2) переходит в систему:

4x = 2y (3)

2x = у (4)

и имеет, например, решения: х = 1; у = 2 или х = 2; у = 4 и многие другие. А вот при λ = 1 система (1)-(2) не нулевых решений не имеет. Это можно установить кропотливой проверкой, проверив все возможные значения параметра λ .

Заметим сразу, что задача вычисления собственных значений (разумеется, для систем гораздо более сложных, чем простейшая система (1) и (2)) имеет очень важное значение в технике. От величин собственных значений зависит устойчивость того или иного технического объекта, здания, сооружения, зависят частоты его колебаний и т. п.

Поэтому задаче вычисления собственных значений, различным методам их расчета, посвящены целые книги (например книга: Х. Д. Икрамов. Несимметричная проблема собственных значений, издательство «Наука», 1991 г., 240 страниц или: Уилкинсон Д. Х. Алгебраическая проблема собственных значений, издательство «Наука», 1970 г., 564 страницы и многие другие). И все методы используют эквивалентные преобразования. А то, что может произойти при эквивалентных преобразованиях, мы покажем на простейшем примере системы (1)-(2).

Вместо громоздкого перебора всех возможных значений λ , собственное значение легко найти эквивалентным преобразованием — подстановкой. Подставив значение переменной у из уравнений (2) в уравнение (1), мы получим:

(2λ 2+ 2)х = 2(λ 2+ λ)χ, (5)

Приведя подобные члены, получим:

(2λ - 2)χ = 0. (6)

Из уравнения (6) сразу следует, что не нулевые решения для х возможны лишь, если λ = 1.

Таким образом, эквивалентные преобразования позволили легко и просто найти (как и следовало ожидать) правильную величину собственных значений. Здесь все верно.

А теперь посмотрим, что получается при проверке корректности, при проверке зависимости собственных значений от малых изменений коэффициентов. После эквивалентных преобразований мы имеем дело с уравнением (6). В него входят два одинаковых коэффициента: двойка при λ и двойка как свободный член. Пусть свободный член изменился на 1% и стал равен 1,98. Тогда и собственное значение изменится на 1% и станет равным 1,01. То же самое произойдет, если на 1% изменится коэффициент при λ . Общий вывод: малым изменениям коэффициентов соответствуют малые изменения решения. Решение корректно.

А теперь (внимание!) исследуем корректность решения той же задачи до эквивалентных преобразований. Обратимся к исходным уравнениям (1) и (2) и посмотрим, что будет, если, например, коэффициент при λ 2в уравнении (1) изменится на 1% и станет равным 1,98, а система (1)-(2) перейдет в систему:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Расследование и предупреждение техногенных катастроф. Научный детектив»

Представляем Вашему вниманию похожие книги на «Расследование и предупреждение техногенных катастроф. Научный детектив» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Расследование и предупреждение техногенных катастроф. Научный детектив»

Обсуждение, отзывы о книге «Расследование и предупреждение техногенных катастроф. Научный детектив» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x