Когда стали исследовать подробнее, то оказалось, что в те годы в США за год происходило от трехсот до четырехсот несчастных случаев с детонаторами, из которых многие — со смертельным исходом. После исследований и предостережений Р. Вуда причину несчастных случаев поняли, приняли меры, число пострадавших сильно сократилось. Сотни человеческих жизней были спасены. Следует ли упоминать, что предостережения ученого были выслушаны внимательно и меры были приняты незамедлительно? Для культурной страны иначе и быть не может. В России, к сожалению, пока еще все совсем не так. Предостережений ученых не слушают.
Но этим дело не ограничилось. После расследования Р. Вуда явление выброса при взрыве летящей с огромной скоростью струи получило название «кумулятивного эффекта», стало интенсивно исследоваться и получать практическое применение. После начала в 1939 году Второй мировой войны «кумулятивный эффект» получил военное применение и послужил основой для самого эффективного противотанкового оружия пехоты американской армии — знаменитой «базуки». По сути дела «базука» — это просто небольшой реактивный гранатомет, выстреливающий на дальность до 450 метров четырехкилограммовую гранату с зарядом особой формы, создающей кумулятивный эффект. Благодаря ему граната легко прожигала танковую броню, и когда в марте 1943 года высадившаяся в Северной Африке американская армия встретилась с немецкими танками, успех был на ее стороне.
Если бы исследования «кумулятивного эффекта» были бы развернуты в СССР, то в 1941 году немецкие танки были встречены не бутылками с бензином, а эффективным оружием, и начало Великой Отечественной войны было бы совсем иным.
Все рассмотренные примеры показывают, что для расследования и предотвращения техногенных несчастных случаев, а особенно — аварий и катастроф — плодотворны прежде всего научные методы.
К научному расследованию причин недавних техногенных аварий и катастроф мы перейдем в следующем разделе.
§ 5. Научное расследование причин катастроф. Открытие «особых» объектов и систем
Научным открытием, позволившим найти причины многих техногенных катастроф (в том числе, возможно, и катастрофы аквапарка «Трансвааль»), стало открытие «особых» объектов и «особых» математических моделей, которые эти объекты описывают. «Особые» объекты — это те, для которых обычные и, вроде бы, многократно проверенные методы проектирования и расчета не дают правильного результата. «Особые» объекты ведут себя совсем не так, как предусмотрено самым добросовестным проектом и расчетом и могут, например, неожиданно обрушиться на головы беззаботных посетителей.
Именно «особым» объектом оказался аквапарк «Трансвааль» (точнее — здание аквапарка). Именно встреча с «особым» техническим объектом стала, возможно, несчастьем для жертв аварии. Она же стала бедой для Н. Канчели и А. Воронина.
«Особые» объекты и «особые» математические модели были открыты и исследованы в Санкт-Петербургском государственном университете (СПбГУ) в 1987—2000 годах. Там же (и в те же годы) были открыты неожиданные свойства эквивалентных преобразований. Эти открытия (и их следствия) один из исследователей назвал «одним из важнейших открытий конца двадцатого века, возможно, даже самым важным»!
Важность открытий, сделанных в СПбГУ, заключается в том, что эквивалентные преобразования (их называют еще равносильными преобразованиями) применяются практически во всех инженерных и экономических расчетах, изучаются в средней школе.
Даже сегодняшние «гуманитарии», наверное, помнят, как в средней школе им рассказывали о простейших эквивалентных (равносильных) преобразованиях:
1. Перенос членов из левой части в правую и наоборот с изменением знака;
2. Умножение всех членов на число, не равное нулю;
3. Подстановка — т. е. замена любого члена на член, равный ему.
Основное свойство эквивалентных преобразований — они не изменяют решений уравнений. Но при этом очень долгое время (вплоть до 1987 года) никто не замечал, что эквивалентные преобразования могут изменять некоторые важные свойства решений. Одно из важнейших свойств — при малых изменениях исходных данных решение должно изменяться мало. Такое свойство решений называют иногда — корректностью, иногда — параметрической устойчивостью. Это свойство важно потому, что на практике все исходные данные проектирования и расчета известны всегда с ограниченной, конечной точностью, да еще к тому же часто немного изменяются с течением времени.
Читать дальше
Конец ознакомительного отрывка
Купить книгу