It was now ten minutes into the crisis; all the bosses had gone home after the crew’s TV show. I needed to notify top management that we had a hell of a problem on our hands and that we didn’t fully understand what it was. Turning to Lunney, I asked him to call Kraft. Glynn handed me the phone as Chris’s wife, Betty Ann, answered. In response to my request she explained that he was in the shower. I said, “Betty Ann, get him out, I need to talk to him.” When a still-dripping Kraft got on the phone, I told him that we had a major electrical problem and that I believed we had lost one or more fuel cells. I concluded on a somewhat desperate note: “Chris, you better get out here quick; I think we’ve had it!”
GNC and GUIDO, Willoughby and Will Fenner, had been quietly watching the crew struggle to control the spacecraft attitude and avoid “gimbal lock.” This grave problem would come about if the rings that support the whirling wheels of the gyroscope all aligned in the same position. We would then no longer have a usable reading from the gyroscopic platform. In gimbal lock we would be unable to maneuver or point the spacecraft. We would be literally adrift in space until the crew took a fix on certain stars to realign the gyros, much in the way a nineteenth-century sailing ship figured out its position. Every time the crew got close to the danger point, Willoughby, in a hushed but forceful voice, would call, “Flight, they are getting close to gimbal lock.” Lousma would advise the crew, who then used the CSM hand controller and attitude jets to maneuver away from disaster.
The team was now functioning well; we were fourteen minutes into the crisis, fighting a delaying action until we figured out what was going on and what to do about it. Most of the problems seemed to rest on Liebergot’s shoulders. He was responsible for the systems needed to sustain life, power, water, oxygen, and pressure. But no matter what we tried, we were unable to stanch the hemorrhage of the fuel cell oxygen reactants.
Then, abruptly, all the pieces of the puzzle came together. Lovell reported, “It looks to me, looking out the window, that we are venting something.” Then with emphasis he said, “We are venting something out into the—into space—it looks like a gas!” A shock rippled through the room as we recognized that an explosion somewhere in the service module had taken out our cryogenics and fuel cells. The controllers felt they were toppling into an abyss. Needless to say, the lunar mission was now a NoGo. The only thought on my mind was survival, how to buy the seconds and minutes to give the crew a chance to return to Earth.
Now I was damn angry that I had wasted fifteen precious minutes by not assembling the pieces earlier. I should have seen it. Somewhere, somehow, an oxygen tank exploded and it caused a lot of collateral damage. The feeling of self-reproach passed quickly; I became icy cold, my mind reaching out for options as my training kicked in.
Our objective from here on was survival. The crew’s only hope was Mission Control. My team had to start the turnaround. With two flight controller teams in the room, the level of chatter was distracting. My team needed to get back on the voice comm and get focused. I finally took charge. Standing up I yelled across the top of the consoles, “Okay, all flight controllers, cut the chatter. I want every member of the White Team to settle down and get back on the voice loops—the rest of you shut up!
“Now, let’s everybody keep cool. The LM is still attached, the spacecraft is good. So if we need to get back home, we have the LM to do a good portion of it with.
“Let’s make sure that we don’t blow the [remaining] command module electrical power with the batteries, or do anything that would cause us to lose fuel cell 2. We have to keep the oxygen working and would like to save the attitude control propellants. We are in good shape to get home.
“Let’s solve the problem, team… let’s not make it any worse by guessing.”
The team focused on keeping the crew alive and finding a way to get them home. Our determination was evident as we calculated the limited resources available in the damaged spacecraft. For the moment the power and the oxygen in the CSM could keep the crew alive but the LM was ultimately the only safe haven, even though it had been designed to accommodate only two men for two days.
I knew I had to move quickly to stabilize the situation and then hand over the remnants of the mission to Lunney’s team. I wanted time to review all the data. I had the absolutely chilling fear that I had missed something important. I hoped that some fresh minds might pick up on it. I wanted to get the White Team off-line, get them together in a quiet corner, nail down the cause, and then start on a plan to rescue the crew. We were the lead team. It was our responsibility to take over management of the crisis.
My console was a mess, littered with schematics, procedures, the console log, and cigarette butts. Lunney’s team was scurrying around the room preparing for handover. Clint Burton, Liebergot’s replacement, nervously awaited his turn in what had become the hot seat. Ed Fendell, who managed communications, joined Gary Scott at the console. Together they would keep up the communications, the key to an orderly transfer to the lunar module. Fendell had been at home and had just happened to have the radio on. He heard the news, jumped in his car, and came in. Racing his Corvette through the back streets of Clear Lake, Fendell arrived in a cloud of dust and parked in the middle of the exit lane. He joined in the battle with Scott, making sure that communication with the crew would be maintained without interruption throughout the crisis. I was glad to see him. I did not know how much longer Scott could continue running solo and pitching a perfect game with the communications.
Kraft arrived as we were starting the second phase of the power-down of the CSM. Liebergot signaled the next phase of the withdrawal with a simple suggestion. “Flight, I think we better get going in powering up the LM. We’re running out of time.” He then gave Lousma the call to have the crew secure the command module entry oxygen system, a small oxygen bottle used during the final two hours of the mission. We were putting together a lifeboat; what did we need to make it work?
Kraft plugged into my console. I glanced up momentarily and said, “Chris, we’re in deep shit.” Moments later, Liebergot began to lay out the bad news, the whole nine yards: “Flight, I hate to tell you this, but I think we’ve lost fuel cells 1 and 3.” I nodded, still thinking that maybe fuel cell 2 and one of the oxygen tanks might be salvageable and could be added to our get-home resources.
Lunney had been down in the Trench reviewing the get-home options. At the time of the explosion, Apollo 13 was 200,000 miles from Earth, 45,000 miles from the surface of the Moon. We were entering the phase of the mission where lunar gravity becomes stronger than Earth’s gravity; we call it “entering the lunar sphere of influence.”
When Lunney came back up to the console, Kraft stepped down from his position behind me. In a hushed tone, Glynn said, “I had the Trench look at maneuvers with ignition about three hours from now. We have two basic options, a direct abort and one going around the Moon. The fastest direct abort gets us home in thirty-four hours. We fly in front of the Moon but we have to jettison the LM and use all the main engine fuel. We have several options that fly around the Moon. The best one takes two days longer, but we don’t use the main engine and we can keep the LM.” We rapidly went through the mathematics; the lunar module was good for two crewmen for two days. A quick estimate using the LM powered-down checklists and taking the path around the Moon left us at least thirty-six hours short on battery power.
Читать дальше