При этом применяя тот или иной математический аппарат для решения различных практических задач, инженеры и исследователи не могли не обратить внимания на тот факт, что различные по своей физической природе процессы нередко описываются одинаковыми математическими уравнениями. Так, к примеру, задачи из области гидродинамики, связанные с обтеканием тел потоком жидкости, решаются аналогично термодинамическим задачам, описывающим процесс распространения тепла в различных нагреваемых материалах, а также процессам распространения тока в электролитах. Ключевым словом здесь становится "аналогично". А раз получаемый результат одинаков во всех этих случаях, значит, процесс решения одной задачи (особенно если реализовать условия для её решения чрезвычайно трудно) можно заметить аналогичным (подобным) процессом из другой предметной области.
Так, решение дифференциальных уравнений второго порядка с переменными коэффициентами, широко применяемых в таких областях, как баллистика и астрономия, может быть получено с помощью последовательности простых механизмов, представляющих вращающиеся перпендикулярно друг другу диски разного диаметра. Один такой механизм способен непрерывно решать простейшее дифференциальное уравнение, передавая полученный интеграл на вход следующего подобного механизма. Придумал этот вычислитель в конце девятнадцатого века физик Уильям Томпсон (лорд Кельвин). Такая механическая система при этом могла выступать аналогом любого другого процесса, описываемого дифференциальными уравнениями. Например, точки прицеливания оружейного ствола. Именно для этих целей использовалась усовершенствованная американским инженером Вэниваром Бушем в тридцатых годах прошлого столетия схема механического вычислителя Кельвина-Томпсона, названная им " Дифференциальный анализатор".
Примерно в это же время в СССР инженер Лукьянов для решения сугубо практической задачи анализа изменения температуры в бетонной кладке в зависимости от состава бетона, технологии его заливки и внешних условий, описываемой всё теми же дифференциальными уравнениями, предложил новый способ механизации трудоёмких расчётов. Обнаружив сходство между движением потока жидкости и распространением тепла в твёрдых телах, Лукьянов разработал устройство, в котором вода выступала в роли аналога термодинамического процесса. Прибор Лукьянова представлял собой систему сосудов с водой и трубок с изменяемым гидравлическим сопротивлением - пьезометров. Подбирая величины гидравлических сопротивлений трубок и схему соединения сосудов, Лукьянов добился возможности решения системы уравнений с частными производными. Результат решения фиксировался на графиках вручную путём замера уровня воды в пьезометрах. Свое устройство Лукьянов назвал гидроинтегратором и постоянно продолжал его совершенствовать. В пятидесятые годы состав блоков гидроинтеграторов был унифицирован, что позволило наладить их серийное производство, специализируя выпускаемые вычислители для различных классов задач. Увидетьдействующую модель гидроинтегратора Лукьянова сегодня можно в Политехническом музее.
Получается, что аналоговыми такие вычислители называются в том числе и потому, что они позволяют заменить процесс, прямое наблюдение которого по разным причинам затруднено, процессом аналогичным, но более наглядным. При этом важно то, что оба процесса описываются одинаковыми математическими зависимостями.
Подобные вычисления относятся к классу неалгоритмических, поскольку вместо описания процесса решения задачи с помощью набора дискретных операций в них применяется непрерывная (аналоговая) форма представления (НФП) обрабатываемых математических величин. Фактически вместо алгоритма решения конструкция подобных вычислителей сама по себе является решением. Подаваемые на их вход значения преобразовываются в соответствии с аналогиями аналитических зависимостей, реализованными в механических, гидравлических (пневматических) или электрических процессах.
Кстати, благодаря аналогии электрического сопротивления температурным процессам, в лаборатории электромоделирования Энергетического института, под руководством профессора Льва Израилевича Гутенмахера, в 1939 году были разработаны варианты аналоговых вычислителей, именуемых электроинтеграторами. Они широко применялись для решения систем уравнений Лапласа, Пуассона и Фурье, используемых при расчёте пространственных температурных полей, в частности в задачах радиационного теплообмена, а также подземной гидравлики в нефтедобывающей отрасли. Представляя собой координатную сетку, в узлах которой были расположены сопротивления с величинами, пропорциональными термическим сопротивлениям, электроинтегратор имитировал температурные поля или, например, нефтяные скважины с помощью токов, задаваемых в узлах этой сетки усилителями постоянного тока.
Читать дальше