Douglas Hofstadter - I Am a Strange Loop
Здесь есть возможность читать онлайн «Douglas Hofstadter - I Am a Strange Loop» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Прочая документальная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:I Am a Strange Loop
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
I Am a Strange Loop: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «I Am a Strange Loop»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
I Am a Strange Loop — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «I Am a Strange Loop», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
The answer is simple: I conceived of these “macroscopic forces” as being merely ways of describing complex patterns engendered by basic physical forces, much as physicists came to realize that such macroscopic phenomena as friction, viscosity, translucency, pressure, and temperature could be understood as highly predictable regularities determined by the statistics of astronomical numbers of invisible microscopic constituents careening about in spacetime and colliding with each other, with everything dictated by only the four basic forces of physics.
I also realized that this kind of shift in levels of description yielded something very precious to living beings: comprehensibility. To describe a gas’s behavior by writing a gigantic piece of text having Avogadro’s number of equations in it (assuming such a herculean feat were possible) would not lead to anyone’s understanding of anything. But throwing away huge amounts of information and making a statistical summary could do a lot for comprehensibility. Just as I feel comfortable referring to “a pile of autumn leaves” without specifying the exact shape and orientation and color of each leaf, so I feel comfortable referring to a gas by specifying just its temperature, pressure, and volume, and nothing else.
All of this, to be sure, is very old hat to all physicists and to most philosophers as well, and can be summarized by the unoriginal maxim Thermodynamics is explained by statistical mechanics, but perhaps the idea becomes somewhat clearer when it is turned around, as follows: Statistical mechanics can be bypassed by talking at the level of thermodynamics.
Our existence as animals whose perception is limited to the world of everyday macroscopic objects forces us, quite obviously, to function without any reference to entities and processes at microscopic levels. No one really knew the slightest thing about atoms until only about a hundred years ago, and yet people got along perfectly well. Ferdinand Magellan circumnavigated the globe, William Shakespeare wrote some plays, J. S. Bach composed some cantatas, and Joan of Arc got herself burned at the stake, all for their own good (or bad) reasons, none of which, from their point of view, had the least thing to do with DNA, RNA, and proteins, or with carbon, oxygen, hydrogen, and nitrogen, or with photons, electrons, protons, and neutrons, let alone with quarks, gluons, W and Z bosons, gravitons, and Higgs particles.
Thinkodynamics and Statistical Mentalics
It thus comes as no news to anyone that different levels of description have different kinds of utility, depending on the purpose and the context, and I have accordingly summarized my view of this simple truth as it applies to the world of thinking and the brain: Thinkodynamics is explained by statistical mentalics, as well as its flipped-around version: Statistical mentalics can be bypassed by talking at the level of thinkodynamics.
What do I mean by these two terms, “thinkodynamics” and “statistical mentalics”? It is pretty straightforward. Thinkodynamics is analogous to thermodynamics; it involves large-scale structures and patterns in the brain, and makes no reference to microscopic events such as neural firings. Thinkodynamics is what psychologists study: how people make choices, commit errors, perceive patterns, experience novel remindings, and so on.
By contrast, by “mentalics” I mean the small-scale phenomena that neurologists traditionally study: how neurotransmitters cross synapses, how cells are wired together, how cell assemblies reverberate in synchrony, and so forth. And by “statistical mentalics”, I mean the averaged-out, collective behavior of these very small entities — in other words, the behavior of a huge swarm as a whole, as opposed to a tiny buzz inside it.
However, as neurologist Sperry made very clear in the passage cited above, there is not, in the brain, just one single natural upward jump, as there is in a gas, all the way from the basic constituents to the whole thing; rather, there are many way-stations in the upward passage from mentalics to thinkodynamics, and this means that it is particularly hard for us to see, or even to imagine, the ground-level, neural-level explanation for why a certain professor of cognitive science once chose to reshelve a certain book on the brain, or once refrained from swatting a certain fly, or once broke out in giggles during a solemn ceremony, or once exclaimed, lamenting the departure of a cherished co-worker, “She’ll be hard shoes to fill!”
The pressures of daily life require us, force us, to talk about events at the level on which we directly perceive them. Access at that level is what our sensory organs, our language, and our culture provide us with. From earliest childhood on, we are handed concepts such as “milk”, “finger”, “wall”, “mosquito”, “sting”, “itch”, “swat”, and so on, on a silver platter. We perceive the world in terms of such notions, not in terms of microscopic notions like “proboscis” and “hair follicle”, let alone “cytoplasm”, “ribosome”, “peptide bond”, or “carbon atom”. We can of course acquire such notions later, and some of us master them profoundly, but they can never replace the silver-platter ones we grew up with. In sum, then, we are victims of our macroscopicness, and cannot escape from the trap of using everyday words to describe the events that we witness, and perceive as real.
This is why it is much more natural for us to say that a war was triggered for religious or economic reasons than to try to imagine a war as a vast pattern of interacting elementary particles and to think of what triggered it in similar terms — even though physicists may insist that that is the only “true” level of explanation for it, in the sense that no information would be thrown away if we were to speak at that level. But having such phenomenal accuracy is, alas (or rather, “Thank God!”), not our fate.
We mortals are condemned not to speak at that level of no information loss. We necessarily simplify, and indeed, vastly so. But that sacrifice is also our glory. Drastic simplification is what allows us to reduce situations to their bare bones, to discover abstract essences, to put our fingers on what matters, to understand phenomena at amazingly high levels, to survive reliably in this world, and to formulate literature, art, music, and science.
CHAPTER 3
The Causal Potency of Patterns
The Prime Mover
AS THE rest of this book depends on having a clear sense for the interrelationships between different levels of description of entities that think, I would like to introduce here a few concrete metaphors that have helped me a great deal in developing my intuitions on this elusive subject.
My first example involves the familiar notion of a chain of falling dominos. However, I’ll j azz up the standard image a bit by stipulating that each domino is spring-loaded in a clever fashion (details do not concern us) so that whenever it gets knocked down by its neighbor, after a short “refractory” period it flips back up to its vertical state, all set to be knocked down once more. With such a system, we can implement a mechanical computer that works by sending signals down stretches of dominos that can bifurcate or join together; thus signals can propagate in loops, jointly trigger other signals, and so forth. Relative timing, of course, will be of the essence, but once again, details do not concern us. The basic idea is just that we can imagine a network of precisely timed domino chains that amounts to a computer program for carrying out a particular computation, such as determining if a given input is a prime number or not. (John Searle, so fond of unusual substrates for computation, should like this “domino chainium” thought experiment!)
Читать дальшеИнтервал:
Закладка:
Похожие книги на «I Am a Strange Loop»
Представляем Вашему вниманию похожие книги на «I Am a Strange Loop» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «I Am a Strange Loop» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.