И Грэм Грин, и Камилла Палья, и Джеймс Уолкотт замечают, что рассказ, фильм, не совпадают с реальностью. Но они думают, что ошибка в рассказе. Получается, что никогда нельзя рассказать правды. Куда уж дальше ехать: человек говорит на английском языке, а мы слышим его на русском.
Но если предположить, что никто не ошибается, то есть Брайан де Пальма вторичен, потому что рассказывает о вторичности Альфреда Хичкока, Хичкок вторичен, потому что фильмы – это рассказы, и то есть не сама реальность, а вторичность, а реальность является не реальностью, а рассказом о ней. То есть сама реальность вторична! Мы тут развлекаемся, а кто-то кино смотрит. Если мы в кино, то должны видеть съемочную площадку. Режиссёра. А кто он? Бог. Значит, вторичность верна, ибо вторичность означает рассказ о боге. А где он? В противоречии.
Увидеть режиссёра, съёмочную площадку можно будет. Но это будет конец света. Как говорится:
– Что-с?
– Армагеддон-с.
Поэтому, видимо, и начали получаться распечатки всех этих ошибок, что год 1999. Видимо, точно приехали.
Далее опять начнём с первой страницы. Хотя это будет, в общем-то, продолжение. С фильма Брайана де Пальма «Подставное тело», именно после рассказа о нем, о его вторичности, началось доказательство Великой теоремы Ферма. Оказывается, мы не только говорим не на том диалекте, но и тело имеем не то. Это не наше тело, а подставное. Поэтому и вынуждены все время говорить неправду.
Доказательство
(Краткое содержание)
Рассказ о Брайане де Пальма включил Ф. в. т. Великую теорему Ферма. Я думал уже всё, ЭССЕ закончено, но опять неожиданно всплыла эта теорема. Посмотрите сначала, что это за теорема, что за легенда. Рассказы о ней напоминают поиски Земли Обетованной. Какого-то всемирного сказочного клада. Недаром Французская Академия обещала большую премию тому, кто её докажет. Желающих доказать теорему было очень много, настолько много, что в конце концов премия была снята. Это было еще в конце 1-й мировой войны. Решили, что если за 300 лет теорему не смогли доказать, то доказать её вообще невозможно. По крайней мере, до тех пор, пока математика не будет развита в достаточной для доказательства этой теоремы степени. Но почитайте эту небольшую выписку из энциклопедии. А главное не надо ничего бояться. Всё будет объясняться просто, буквально на пальцах. Если вы читали Агату Кристи здесь вам бояться нечего. А если что-то покажется непонятным или сложным, можете смело пропустить, вреда не будет. Потом вы к этому вернетесь и увидите, что всё не более, чем дважды два – четыре. Или, как говорится, дальше «Чёрного квадрата» Малевича мы все равно не уедем. Итак:
(Fermat) Ферма Пьер (18.08.1601 Болон-де-Ломан – 12.01.1665 Кастр.) французский математик. Юрист, с 1631 г., был советником парламента в Тулузе.
Ферма теорема, великая теорема Ферма, знаменитая теорема Ферма, большая теорема Ферма, последняя теорема Ферма – утверждение, что для любого натурального числа n> 2, уравнение
Хn + Yn = Zn (уравнение Ферма) не имеет решений в целых ненулевых числах x, y, z. Она была сформулирована П. Ферма примерно в 1630 году на полях книги Диофанта «Арифметика» следующим образом
«невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата, и вообще никакую степень большую квадрата, на две степени с тем же показателем». И далее добавил: «я открыл этому поистине чудесное доказательство, но эти поля для него слишком малы».
В бумагах П. Ферма нашли доказательство Ф.т. для n=4. Общее доказательство до сих пор еще не найдено, несмотря на усилия многих математиков (как профессионалов, так и любителей). Нездоровый интерес к доказательству этой теоремы среди неспециалистов в области математики был в своё время вызван большой международной премией, снятой в конце 1-й мировой войны.
Предполагается, что доказательство Ф.т. вообще не существовало.
Доказательство для n=3 дал Л. Эйлер в 1770 г., для n=5 И. Дирихле и А. Лежандр в 1825 г. и так далее.
Несмотря на простоту формулировки Ф. в. т., полное её доказательство, по-видимому, требует создание новых и глубоких методов в теории диофантовых уравнений.
Из другой книги:
«Ферма написал на полях против 8-й задачи I I книги Диофанта „Разделить квадратное число на два других квадратных числа“ следующие слова: „Разделить куб на два других куба, четвертую степень или вообще какую-либо степень выше второй на две степени с тем же обозначением невозможно, и я нашел воистину замечательное доказательство этого, однако поля слишком узки, чтобы поместить его.“ Если Ферма имел такое замечательное доказательство, то за последующие три столетия напряженных исследований такое доказательство не удалось получить. Надежнее допустить, что даже великий Ферма иногда ошибался.»
Читать дальше