Хотя членство в Обществе не обязывало к какой бы то ни было преподавательской деятельности, профессор Гроштейн попросил меня прочесть для студентов первого курса элементарный раздел математики под названием Math. 1 А. (Возможно даже, что погибший президент Кеннеди одно время числился среди студентов этой группы. Мне запомнилось сходное имя, а также чьи-то слова о том, что этот студент — весьма примечательная личность. Он уехал за границу в середине семестра. Когда, годы спустя, я встретился с президентом Кеннеди, то я забыл спросить его, действительно ли он посещал тот курс.)
Мне уже случалось читать лекции и проводить семинары, однако преподавание полного курса было мне вновь, и я нашел такое занятие увлекательным. Для молодых преподавателей было установлено правило — строго придерживаться программы предписанного учебника. Я, по-видимому, справлялся не так уж плохо, поскольку студенческая газета, проводившая оценку работы преподавателей, удостоила меня похвалы, назвав интересным преподавателем. Вскоре после начала чтения курса Дж. Д. Биркгоф пришел посмотреть, как я провожу занятие. Возможно, ему хотелось проверить мой английский. Он сидел в дальнем конце аудитории и наблюдал за тем, как я учу студентов писать уравнения параллельных прямых в аналитической геометрии. Затем я сказал, что на следующем занятии мы будем изучать уравнения перпендикулярных прямых, которые, добавил я, «более сложны». По окончании лекции Биркгоф подошел ко мне со словами: «Вы справились очень хорошо, но я бы не сказал, что перпендикулярные прямые — вещь более сложная». Я же ответил, что на мой взгляд это как раз помогает студентам запомнить материал лучше, чем в случае, если я скажу им, что все очень просто. У Биркгофа эта педагогическая попытка с моей стороны вызвала улыбку. Думаю, ему импонировала моя независимость и прямота, и мы встречались довольно часто.
Вскоре после моего прибытия в Кембридж [9] Гарвард находится в американском городе Кембридже близ Бостона, штат Массачусетс. — Прим. ред.
он пригласил меня к себе на обед. Там состоялось мое первое знакомство с незнакомыми мне блюдами вроде тыквенного пирога. После обеда, который был очень приятным, я собрался уходить, и Дж. Д. взял мое пальто, чтобы помочь надеть его. Подобного рода любезность в Польше была неслыханным делом; там старший никогда бы не помог тому, кто намного младше его. Помню, что я густо покраснел от смущения.
За ланчем я нередко встречался с его сыном Гарретом, и мы частенько прогуливались вместе. Мы много говорили о математике, а также предавались обсуждению слухов — привычному для математиков и любимому ими занятию. Конечно, оценивать, насколько хорош X или Y — тема для разговора довольно неглубокая, но такова уж особенность нашего племени. Читатель, возможно, уже заметил, что она не чужда и мне. Так как математика больше относится к роду искусства, ценности здесь зависят скорее от личных вкусов и чувств, чем от объективных, фактически существующих понятий. Математики тоже падки на тщеславие, хоть и в меньшей степени, чем оперные теноры или художники. Но когда каждый математик знает какой-нибудь определенный «раздельчик» математики лучше кого-то другого, и если учесть, что математика — настолько емкий, а сейчас все более и более специализированный предмет, некоторые находят удовольствие в распределении наиболее известных математиков по «классам» в линейном порядке и комментировании их относительных заслуг. В целом это безвредное, хоть и отчасти пустое времяпрепровождение.
Помню, как лет в восемь-девять я попытался оценить любимые фрукты, расположив их в порядке их «хорошести». Я рассуждал, что груша лучше яблока, которое лучше сливы, которая лучше апельсина, до тех пор, пока, к своему ужасу, я не обнаружил, что, говоря языком математика, в этом отношении отсутствует транзитивность, а именно — сливы могут быть лучше орехов, которые лучше яблок, но яблоки лучше слив. Я попал в порочный круг, и в том возрасте это просто ошеломило меня. Нечто похожее характеризует и «рейтинги» математиков.
Многие математики также щепетильно относятся к тому, что они считают самыми прекрасными детищами своего ума — к своим результатам и теоремам — и склонны проявлять собственническое отношение к ним. Парадоксально, но также они склонны считать свою работу трудной, а работу других — более легкой. В других областях все как раз наоборот — там чем лучше ты с чем-то знаком, тем легче оно тебе кажется.
Читать дальше