Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Здесь есть возможность читать онлайн «Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Пространства, времена, симметрии. Воспоминания и мысли геометра: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Пространства, времена, симметрии. Воспоминания и мысли геометра»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.
Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.

Пространства, времена, симметрии. Воспоминания и мысли геометра — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Пространства, времена, симметрии. Воспоминания и мысли геометра», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эллиптическое и гиперболическое пространства являются частными случаями риманова пространства. Так как площадь всякого прямолинейного треугольника АВС в эллиптическом пространстве, получаемом из гиперсферы радиуса r, равна r (A+B+C-п), эллиптическое пространство является римановым пространством постоянной положительной кривизны 1/r 2. Taк как площадь всякого прямолинейного треугольника АВС в гиперболическом пространстве, получаемом из гиперсферы мнимого радиуса r, равна r (A+B+C-pi),, гиперболическое пространство является римановым пространством постоянной отрицательной кривизны -1/q 2.

Aналогично определяется секционная кривизна в двумерном направлении в псевдоримановом пространстве.

Если в дифференцируемом многообразии для всяких двух бесконечно близких точек определено аффинное отображение касательных пространств в этих точках, многообразие называется пространством аффинной связности.

Если в римановом или псевдоримановом пространстве или в пространстве аффинной связности отражение от каждой точки по геодезическим линиям не изменяет расстояний между точками или сохраняет аффинную связность, пространство называется симметрическим пространством.

Геометрии вещественных евклидовых, псевдоевклидовых, неевклидовых, симметрических, римановых и псевдоримановых пространств посвящены многие главы моих книг 1955, 1966, 1969 и 1997 гг. При этом особое внимание я уделял интерпретациям неевклидовых пространств, так как считаю интерпретации "стереоскопическим зрением геометра", ибо свойства неевклидовых пространств, которые отличаются от свойст евклидова пространства и ускользают от нашего внимания в одних интерпретациях, хорошо видны в других интерпретациях.

Комплексные и кватернионные пространства

Комплексное квадратичное евклидово пространство определяется так же, как вещественное. Это же пространство является комплексной формой всех вещественных псевдоевклидовых пространств той же размерности. В случае комплексного и кватернионного эрмитовых евклидовых пространств скалярный квадрат (а,а) является вещественной положительно определенной эрмитовой формой, а в случае комплексного и кватернионного эрмитовых псевдоевклидовых пространств индекса k скалярный квадрат (а,а) является вещественной знаконеопределенной эрмитовой формой индекса k.

Расстояние между точками А и В эрмитова евклидова или псевдоевклидова пространства равно квадратному корню из скалярного квадрата (а,а) вектора а=АВ. Нетрудно проверить, что n-мерные комплексное и кватернионное эрмитовы евклидовы пространства изометричны, соответственно, 2n-мерному и 4n-мерному вещественным евклидовым пространствам, а комплексное и кватернионное эрмитовы псевдоевклидовы пространства индекса k изометричны, соответственно, 2n-мерному вещественному псевдоевклидову пространству индекса 2k и 4n-мерному вещественному псевдоевклидову пространству индекса 4k.

Движениями эрмитовых евклидовых и псевдоевклидовых пространств называются аффинные преобразования этих пространств, сохраняющие расстояния между точками.

Если а и b - два вектора комплексного или кватернионного эрмитова пространства, изображаемые в вещественных пространствах ортогональными векторами, то их скалярное произведение (a,b) равно ucos j, где u в случае комплексного пространства - мнимая единица i, a в случае кватернионного пространства - кватернион bi +cj +dk единичного модуля, а j называется углом голоморфности. Угол j равен 0, когда векторы а и b принадлежат одной прямой линии, и равен п/2, когдя эти векторы принадлежат одной нормальной n-цепи, т.е. множеству точек с вещественными координатами или тому, что получается из этого множества точек при движении пространства. Двумерные площадки, для которых j=0, называются голоморфными, а двумерные площадки, для которых j=n/2, называются антиголоморфными.

Аналогично, угол голоморфии и голоморфные и антиголоморфные двумерные площадки определяются в комплексных и кватернионных эрмитовых псевдоевклидовых пространствах.

Точки n-мерных комплексного и кватернионного эрмитовых эллиптических пространств можно представить прямыми линиями (n + 1)- мерных эрмитовых евлидовых пространств над полем С или телом Н, проходящими через одну точку, причем расстояние d между точками равно произведению угла между прямыми на число r, связанное с векторами а и b, направленными по прямым, представляющим эти точки соотношениями R 2= (a,a) = (b,b). Поэтому cos 2(d/r) = (a,b)(b,a)/(a,a)(b,b). Отсюда следует, что комплексное и кватернионное эрмитовы эллиптические пространства можно определить как проективное пространство над полем С или телом Н, в котором задано расстояние d между точками А и В, представленными векторами а и b, по указанному равенству. Правая часть этого равенства равна двойному отношению точек А и В и точек пересечения полярных гиперплоскостей этих точек относительно эрмитовой гиперквадрики (x,x)=0 с прямой АВ.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Пространства, времена, симметрии. Воспоминания и мысли геометра»

Представляем Вашему вниманию похожие книги на «Пространства, времена, симметрии. Воспоминания и мысли геометра» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Пространства, времена, симметрии. Воспоминания и мысли геометра»

Обсуждение, отзывы о книге «Пространства, времена, симметрии. Воспоминания и мысли геометра» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x