Эллиптическое и гиперболическое пространства являются частными случаями риманова пространства. Так как площадь всякого прямолинейного треугольника АВС в эллиптическом пространстве, получаемом из гиперсферы радиуса r, равна r (A+B+C-п), эллиптическое пространство является римановым пространством постоянной положительной кривизны 1/r 2. Taк как площадь всякого прямолинейного треугольника АВС в гиперболическом пространстве, получаемом из гиперсферы мнимого радиуса r, равна r (A+B+C-pi),, гиперболическое пространство является римановым пространством постоянной отрицательной кривизны -1/q 2.
Aналогично определяется секционная кривизна в двумерном направлении в псевдоримановом пространстве.
Если в дифференцируемом многообразии для всяких двух бесконечно близких точек определено аффинное отображение касательных пространств в этих точках, многообразие называется пространством аффинной связности.
Если в римановом или псевдоримановом пространстве или в пространстве аффинной связности отражение от каждой точки по геодезическим линиям не изменяет расстояний между точками или сохраняет аффинную связность, пространство называется симметрическим пространством.
Геометрии вещественных евклидовых, псевдоевклидовых, неевклидовых, симметрических, римановых и псевдоримановых пространств посвящены многие главы моих книг 1955, 1966, 1969 и 1997 гг. При этом особое внимание я уделял интерпретациям неевклидовых пространств, так как считаю интерпретации "стереоскопическим зрением геометра", ибо свойства неевклидовых пространств, которые отличаются от свойст евклидова пространства и ускользают от нашего внимания в одних интерпретациях, хорошо видны в других интерпретациях.
Комплексные и кватернионные пространства
Комплексное квадратичное евклидово пространство определяется так же, как вещественное. Это же пространство является комплексной формой всех вещественных псевдоевклидовых пространств той же размерности. В случае комплексного и кватернионного эрмитовых евклидовых пространств скалярный квадрат (а,а) является вещественной положительно определенной эрмитовой формой, а в случае комплексного и кватернионного эрмитовых псевдоевклидовых пространств индекса k скалярный квадрат (а,а) является вещественной знаконеопределенной эрмитовой формой индекса k.
Расстояние между точками А и В эрмитова евклидова или псевдоевклидова пространства равно квадратному корню из скалярного квадрата (а,а) вектора а=АВ. Нетрудно проверить, что n-мерные комплексное и кватернионное эрмитовы евклидовы пространства изометричны, соответственно, 2n-мерному и 4n-мерному вещественным евклидовым пространствам, а комплексное и кватернионное эрмитовы псевдоевклидовы пространства индекса k изометричны, соответственно, 2n-мерному вещественному псевдоевклидову пространству индекса 2k и 4n-мерному вещественному псевдоевклидову пространству индекса 4k.
Движениями эрмитовых евклидовых и псевдоевклидовых пространств называются аффинные преобразования этих пространств, сохраняющие расстояния между точками.
Если а и b - два вектора комплексного или кватернионного эрмитова пространства, изображаемые в вещественных пространствах ортогональными векторами, то их скалярное произведение (a,b) равно ucos j, где u в случае комплексного пространства - мнимая единица i, a в случае кватернионного пространства - кватернион bi +cj +dk единичного модуля, а j называется углом голоморфности. Угол j равен 0, когда векторы а и b принадлежат одной прямой линии, и равен п/2, когдя эти векторы принадлежат одной нормальной n-цепи, т.е. множеству точек с вещественными координатами или тому, что получается из этого множества точек при движении пространства. Двумерные площадки, для которых j=0, называются голоморфными, а двумерные площадки, для которых j=n/2, называются антиголоморфными.
Аналогично, угол голоморфии и голоморфные и антиголоморфные двумерные площадки определяются в комплексных и кватернионных эрмитовых псевдоевклидовых пространствах.
Точки n-мерных комплексного и кватернионного эрмитовых эллиптических пространств можно представить прямыми линиями (n + 1)- мерных эрмитовых евлидовых пространств над полем С или телом Н, проходящими через одну точку, причем расстояние d между точками равно произведению угла между прямыми на число r, связанное с векторами а и b, направленными по прямым, представляющим эти точки соотношениями R 2= (a,a) = (b,b). Поэтому cos 2(d/r) = (a,b)(b,a)/(a,a)(b,b). Отсюда следует, что комплексное и кватернионное эрмитовы эллиптические пространства можно определить как проективное пространство над полем С или телом Н, в котором задано расстояние d между точками А и В, представленными векторами а и b, по указанному равенству. Правая часть этого равенства равна двойному отношению точек А и В и точек пересечения полярных гиперплоскостей этих точек относительно эрмитовой гиперквадрики (x,x)=0 с прямой АВ.
Читать дальше