Коммутативная группа, в которой определено умножение на вещественные числа, причем имеют место дистрибутивный закон умножения относительно сложения и ассоциативный закон умножения, называется линейным или векторным пространством. Элементы этого пространства называются векторами, а вещественные числа - скалярами. Размерность этого пространства равна числу линейно независимых векторов. Принимая эти векторы за базисные, мы можем представить любой вектор в виде линейной комбинации базисных векторов. Коэффициенты такого разложения являются координатами векторов в данном базисе.
Скалярная линейная функция от элементов линейного пространства записывается в виде j =ux, где х - вектор данного пространства, u - ковектор, т.е. вектор пространства, сопряженного с данным, выражение ux называется сверткой ковектора u и вектора х.
Скалярная полилинейная функция Ф р векторов и q ковекторов определяет тензор р-й ковалентности q-й валентности, коэффициенты функции Ф называются координатами тензора.
Функция Ф при р=2, q=0 называется билинейной формой.
Автоморфизмами линейного пространства являются его линейные преобразования x'=Ax, где А - линейный оператор.
Линейные операторы определяют тензоры, для которых р=q = 1.
Кольцо, являющееся линейным пространством при условии коммутативности умножения в кольце и умножения на скаляры в линейном пространстве, называется алгеброй или системой гиперкомплексных чисел.
Прямой суммой А+В двух алгебр А и В размерностей m и n называется алгебра размерности m+n, базис которой состоит из базисов алгебр А и B, причем все произведения базисных элементов разных прямых слагаемых равны 0.
Тензорным произведением АВ тех же двух алгебр А и В называется алгебра размерности mn, базисные элементы которой - произведения базисных элементов алгебр А и B, причем базисные элементы тензорных сомножителей коммутируют между собой.
Примерами алгебр являются:
алгебра С' двойных чисел а+be, e2= + 1, изоморфная прямой сумме R+R двух полей R,
алгебра М(п) вещественных матриц n-го порядка,
алгебра Н' псевдокватернионов a+bi+ce+df, i2=-1, e2= + 1, ie=-ei=f, изоморфная алгебре М(2),
алгебры СМ(п) и НМ(п) комплексных и кватернионных матриц n-го порядка, являющиеся тензорными произведениями алгебры M(n) на, соответственно, алгебру С или Н,
алгебра Cо дуальных чисел a+be, e2=0,
алгебра Но полукватернионов a+bi+ce+dh, i2=-1, e2=0, ie =-ei=h.
Алгебра A(n) альтернионов или чисел Клиффорда порядка n имеет размерность 2n-1, ee базис состоит из 1, i1,i2,...,in-1 для которых ik2= -1, и произведений различных одноиндексных элементов, причем ihik=-ikih. Aлгебры А(п) при n = 1, 2, 3, 4, 5, 6, 7, 8 изоморфны, соответственно, полям R и С, телу Н и алгебрам Н + Н, HM(2), CM(4), М(8) и М(8)+М(8).
Заменяя в определении алгебры А(п) k элементов ih элементами еh для которых eh2= +1, мы получим алгебру A(n-k, k) псевдоальтернионов порядка n и индекса k. Алгебры А(1,1) и А(2,1) изоморфны, соответственно, алгебрам C' и H'.
Заменяя в определении линейного пространства поле R скаляров полем C или телом H мы получим комплексное или кватернионное линейное пространство.
Заменяя в определении линейного пространства поле скаляров алгеброй с делителями нуля, мы получим модуль. В модулях имеются особенные векторы, которые не равны 0, но их произведения на делитель нуля, могут быть равны 0.
Пространства над алгебрами
Аффинное пространство над алгеброй можно определить как множество элементов, называемых точками, ассоциированное с линейным пространством или модулем, причем всяким двум точкам А и В соответствует вектор а=АВ, всякой точке А и вектору а соответствует такая точка В, что а=АВ, и для всяких трех точек А, В и С сумма векторов АВ и ВС равна вектору АС.
Прямой линией аффинного пространства над алгеброй называется такое множество точек, что для любых двух точек А и В этого множества вектор АВ коллинеарен с некоторым вектором линейного пространства или с неособенным вектором модуля ; m-мерной плоскостью называется такое множество точек, что для любых двух точек А и В этого множества вектор АВ является линейной комбинацией m линейно независимых векторов линейного пространства или модуля.
Аффинные преобразования аффинного пространства имеют вид x'=Af(x) + b, где А и b - линейный оператор и вектор линейного пространства или модуля, a f(x) - автоморфизм алгебры.
Две прямые линии или m-мерные плоскости называются параллельными, если они определяются одними и теми же линейно независимыми векторами линейного пространства или модуля. Одну из двух параллельных линий или плоскостей можно перевести в другую параллельным переносом x'=x+a.
Читать дальше