Инесса Раскина - Логика для всех. От пиратов до мудрецов

Здесь есть возможность читать онлайн «Инесса Раскина - Логика для всех. От пиратов до мудрецов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент МЦНМО, Жанр: Прочая детская литература, Математика, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Логика для всех. От пиратов до мудрецов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Логика для всех. От пиратов до мудрецов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).
В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.
Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.
Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Логика для всех. От пиратов до мудрецов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Логика для всех. От пиратов до мудрецов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Д10. Чтобы выполнить пожелание Ани, необходимы и яблоки, и сливы. Чтобы порадовать Галю, нужны еще и персики. Остается лишь проверить, что Боря и Витя при этом тоже будут довольны.

Ответ.Надо купить яблоки, сливы и персики.

Д11. 1) Луна сделана не из сыра или Солнце не из масла.

2) Я не видел медведя или он видел меня.

3) Я боюсь львов или крокодилов.

4) Лошадь не заблудилась и ее не засыпало снегом.

5) Я не отправился в разведку ни на коне, ни на ядре.

Д12.Третья дверь может вести только в учительскую. Значит, за дверью с табличкой «Спортзал» не спортзал и не учительская, т. е. столовая.

Ответ.В столовую.

Д13. Если Руссо прав, то Жан и Жак оба лгут, чего не может быть (вспомните, что говорит Жан). Значит, Руссо лжет. Поэтому Жак прав. А тогда Жан лжет.

Ответ.Правду говорит только Жак.

Д14.Если А – рыцарь, то ОБЕ части его высказывания правдивы. Но в одной из них сказано, что он лжец. Противоречие. Значит, А – лжец. Первая часть его высказывания истинна, поэтому ложной должна быть вторая часть (тогда и все высказывание ложно). Поэтому Б тоже лжец.

Ответ.Оба лжецы.

Д15. Решение 1.Все трое рыцарями быть не могли (в таком случае они не стали бы называть друг друга лжецами).

Два рыцаря и один лжец тоже быть не могли (в таком случае оба утверждения ложны, а лжец только один).

Два лжеца быть могли. Например, Ох и Ух, которые и сделали ложные утверждения, так как Ах – рыцарь.

Все трое лжецами быть не могли, так как в таком случае оба утверждения истинны.

Решение 2.Если оба ответа ложны, то среди троих двое солгали и есть хотя бы один рыцарь, то есть лжецов ровно двое. Если же среди ответов есть верный, то его дал рыцарь, а двое им названных – лжецы. Пример: рыцарь Ух сказал, что Ах и Ох лжецы.

Ответ.Двое.

Д16.Если бы А был лжецом, его высказывание оказалось бы истинным. Поэтому он рыцарь. В таком случае он говорит правду, и Б – лжец.

Комментарий.Задача напоминает парадокс лжеца: здесь также сказанное имеет отношение к его истинности. Но наличие второго островитянина Б превращает парадокс в задачу с однозначным ответом.

Д17. Среди них нет рыцарей, и оба они не могут быть лжецами, потому что тогда они бы сказали правду. Значит, либо оба они хитрецы, либо один хитрец, а другой лжец.

Д18. Решение1. Посмотрим, кто может быть рыцарем. Это не А, называющий себя хитрецом. И не Б, так как в этом случае никто не мог бы быть лжецом. Значит, рыцарь – В. Он говорит правду, поэтому Б – хитрец. Тогда А – лжец. Заметим, что высказывание хитреца Б ложно.

Решение 2.Предположим, что А сказал правду и он действительно хитрец, тогда В солгал и он лжец. В этом случае Б должен быть рыцарем. Но его высказывание неверно, так как В никогда не говорит правду. Получили противоречие. Предположим теперь, что А солгал, тогда он лжец, и, следовательно, высказывание Б ложно. Значит, Б – солгавший хитрец, а В – рыцарь, что подтверждается его верным высказыванием.

Ответ.А – лжец, Б – хитрец, В – рыцарь.

Д19. Высказывания Ромы и Коли противоположны, поэтому истинно ровно одно из них. Это же можно сказать о высказываниях Маши и Нины. Кроме того, из высказывания Саши следует, что либо он говорит правду, либо Аня. Значит, из высказываний Ани и Саши истинно тоже ровно одно. Поскольку истинных высказываний ровно три, оставшиеся высказывания (Володи, Егора и Олега) ложные. Окно разбила Нина.

Ответ.Нина.

Д20. В понедельник, вторник, среду, пятницу и воскресенье.

Д21. Если в думе есть хоть один рыцарь, то всего в ней четное число депутатов, и спикер – лжец. А если нет ни одного рыцаря, то он тем более лжец!

Ответ.Лжец.

Д22. Формально: см. третью строку таблицы истинности высказывания «А ⇒ Б». Неформально: у волка есть и другие причины для радости.

Ответ.Нет.

Д23. Достаточно привести любой пример, в котором все три высказывания верны, но Иван не является братом Марьи. Иван может приходиться Марье отцом, дядей, племянником и т. д.

Ответ.Нет.

Комментарий.К ошибочному выводу можно было бы прийти, перепутав в первом высказывании причину и следствие и ошибочно заменив его на обратное: «Если Иван и Марья – родственники, то Иван – брат или сын Марьи».

Д24. Если этот житель рыцарь, то он сказал правду, и его друг действительно лжец. А если он сам лжец? Тогда любое утверждение, начинающееся со слов «Если я рыцарь…» оказывается истинным и просто не может быть произнесено лжецом!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Логика для всех. От пиратов до мудрецов»

Представляем Вашему вниманию похожие книги на «Логика для всех. От пиратов до мудрецов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Людмила Раскина - Былое и думы собаки Диты
Людмила Раскина
Айзек Азимов - Логика есть логика
Айзек Азимов
Отзывы о книге «Логика для всех. От пиратов до мудрецов»

Обсуждение, отзывы о книге «Логика для всех. От пиратов до мудрецов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x