Д10. Чтобы выполнить пожелание Ани, необходимы и яблоки, и сливы. Чтобы порадовать Галю, нужны еще и персики. Остается лишь проверить, что Боря и Витя при этом тоже будут довольны.
Ответ.Надо купить яблоки, сливы и персики.
Д11. 1) Луна сделана не из сыра или Солнце не из масла.
2) Я не видел медведя или он видел меня.
3) Я боюсь львов или крокодилов.
4) Лошадь не заблудилась и ее не засыпало снегом.
5) Я не отправился в разведку ни на коне, ни на ядре.
Д12.Третья дверь может вести только в учительскую. Значит, за дверью с табличкой «Спортзал» не спортзал и не учительская, т. е. столовая.
Ответ.В столовую.
Д13. Если Руссо прав, то Жан и Жак оба лгут, чего не может быть (вспомните, что говорит Жан). Значит, Руссо лжет. Поэтому Жак прав. А тогда Жан лжет.
Ответ.Правду говорит только Жак.
Д14.Если А – рыцарь, то ОБЕ части его высказывания правдивы. Но в одной из них сказано, что он лжец. Противоречие. Значит, А – лжец. Первая часть его высказывания истинна, поэтому ложной должна быть вторая часть (тогда и все высказывание ложно). Поэтому Б тоже лжец.
Ответ.Оба лжецы.
Д15. Решение 1.Все трое рыцарями быть не могли (в таком случае они не стали бы называть друг друга лжецами).
Два рыцаря и один лжец тоже быть не могли (в таком случае оба утверждения ложны, а лжец только один).
Два лжеца быть могли. Например, Ох и Ух, которые и сделали ложные утверждения, так как Ах – рыцарь.
Все трое лжецами быть не могли, так как в таком случае оба утверждения истинны.
Решение 2.Если оба ответа ложны, то среди троих двое солгали и есть хотя бы один рыцарь, то есть лжецов ровно двое. Если же среди ответов есть верный, то его дал рыцарь, а двое им названных – лжецы. Пример: рыцарь Ух сказал, что Ах и Ох лжецы.
Ответ.Двое.
Д16.Если бы А был лжецом, его высказывание оказалось бы истинным. Поэтому он рыцарь. В таком случае он говорит правду, и Б – лжец.
Комментарий.Задача напоминает парадокс лжеца: здесь также сказанное имеет отношение к его истинности. Но наличие второго островитянина Б превращает парадокс в задачу с однозначным ответом.
Д17. Среди них нет рыцарей, и оба они не могут быть лжецами, потому что тогда они бы сказали правду. Значит, либо оба они хитрецы, либо один хитрец, а другой лжец.
Д18. Решение1. Посмотрим, кто может быть рыцарем. Это не А, называющий себя хитрецом. И не Б, так как в этом случае никто не мог бы быть лжецом. Значит, рыцарь – В. Он говорит правду, поэтому Б – хитрец. Тогда А – лжец. Заметим, что высказывание хитреца Б ложно.
Решение 2.Предположим, что А сказал правду и он действительно хитрец, тогда В солгал и он лжец. В этом случае Б должен быть рыцарем. Но его высказывание неверно, так как В никогда не говорит правду. Получили противоречие. Предположим теперь, что А солгал, тогда он лжец, и, следовательно, высказывание Б ложно. Значит, Б – солгавший хитрец, а В – рыцарь, что подтверждается его верным высказыванием.
Ответ.А – лжец, Б – хитрец, В – рыцарь.
Д19. Высказывания Ромы и Коли противоположны, поэтому истинно ровно одно из них. Это же можно сказать о высказываниях Маши и Нины. Кроме того, из высказывания Саши следует, что либо он говорит правду, либо Аня. Значит, из высказываний Ани и Саши истинно тоже ровно одно. Поскольку истинных высказываний ровно три, оставшиеся высказывания (Володи, Егора и Олега) ложные. Окно разбила Нина.
Ответ.Нина.
Д20. В понедельник, вторник, среду, пятницу и воскресенье.
Д21. Если в думе есть хоть один рыцарь, то всего в ней четное число депутатов, и спикер – лжец. А если нет ни одного рыцаря, то он тем более лжец!
Ответ.Лжец.
Д22. Формально: см. третью строку таблицы истинности высказывания «А ⇒ Б». Неформально: у волка есть и другие причины для радости.
Ответ.Нет.
Д23. Достаточно привести любой пример, в котором все три высказывания верны, но Иван не является братом Марьи. Иван может приходиться Марье отцом, дядей, племянником и т. д.
Ответ.Нет.
Комментарий.К ошибочному выводу можно было бы прийти, перепутав в первом высказывании причину и следствие и ошибочно заменив его на обратное: «Если Иван и Марья – родственники, то Иван – брат или сын Марьи».
Д24. Если этот житель рыцарь, то он сказал правду, и его друг действительно лжец. А если он сам лжец? Тогда любое утверждение, начинающееся со слов «Если я рыцарь…» оказывается истинным и просто не может быть произнесено лжецом!
Читать дальше
Конец ознакомительного отрывка
Купить книгу