Ответ.Вывод неверен.
7.7. Утверждение «Если собаки рядом нет, то кот не шипит» противоположно обратному к утверждению «Если кот шипит, то рядом собака». Поэтому они равносильны, и достаточно было бы произнести любое из них.
Ответ.Сказал.
7.8. 1) Неверно, про Петино поведение при несделанных уроках никаких данных нет. Он мог, скажем, поднять руку, чтобы задать вопрос. 2) К сожалению, верно. Это можно доказать от противного: если бы Петя был готов к уроку, он бы поднял руку.
7.9. Решение 1.Предположим противное: числа на концах любого ребра отличаются не более чем на 2. Рассмотрим вершину, в которой расположено число 1. В соседних с ней вершинах могут располагаться лишь 2 и 3. Но у каждой вершины куба есть три соседних. Полученное противоречие доказывает, что предположение неверно, и числа на концах хоть какого-нибудь ребра должны отличаться не менее чем на 3.
Решение 2.Предположим противное: числа на концах любого ребра отличаются не более чем на 2. От одной вершины до любой другой вершины можно добраться по одному, двум или трем ребрам. Поэтому числа в вершинах куба отличаются друг от друга не более чем на 6. Однако среди них есть 1 и 8, отличающиеся на 7. Полученное противоречие доказывает, что предположение неверно, числа на концах хоть какого-нибудь ребра должны отличаться не менее чем на 3.
7.10. Решение 1.Предположим, что нет двух друзей, которые послали открытки друг другу. Тогда каждый мог получить не более четырех открыток – только от тех, кому сам не посылал. И даже если все открытки дошли, каждый получил меньше открыток, чем послал. Поэтому и общее число отправленных открыток больше числа полученных. Противоречие.
Решение 2.Предположим, что нет двух друзей, которые послали открытки друг другу. Тогда послано не более 10 · 9: 2 = 45 открыток, но по условию их было послано 5*10 = 50. Противоречие.
7.11.Допустим, что это возможно. Пусть сумма чисел, стоящих в концах отрезков, равна А , сумма чисел, расположенных в серединах отрезков, равна В, а сумма трех чисел вдоль каждого отрезка равна С. Ясно, что А + В = 0 + 1 + 2 +.. + 9 = 45. Каждая концевая точка принадлежит ровно трем отрезкам, а все середины различны. Поэтому, сложив суммы чисел на всех шести отрезках, получим: ЗА + В = 6С. Отсюда 2А + 45 = 6С. Получили противоречие, так как слева нечетное число, а справа четное.
Ответ.Нельзя.
7.12.Вничью игра закончиться не может. Это означает, что ровно у одного из игроков есть выигрышная стратегия. Предположим, что такая стратегия есть у второго игрока. Долька, находящаяся в правом верхнем углу, съедена в любом случае после первого хода. Если у второго есть выигрышная стратегия, то у него есть выигрышный ответный ход на ход первого, состоящий в поедании только правой верхней дольки. Но этот выигрышный ход первый может с тем же успехом сделать сам с самого начала, а далее воспользоваться выигрышной стратегией второго.
7.13. Обсуждение.Задача кажется неприступной. Прежде чем нащупать «узкое место», хочется поэкспериментировать. Но как тут экспериментировать, когда секторов 25, да еще и порядок произвольный? А если секторов поменьше? Если секторов три, их все посетить не удастся, это доказывается коротким перебором. Если четыре, то их все можно посетить. Если пять – снова не удается. Здесь полный перебор уже затруднителен, зато видны две особенности сектора номер пять: если попадешь в пятерку, оттуда никуда не уйдешь; если удается пройти почти все числа, то именно пятерка всегда остается. Интересно, почему?
Решение.Предположим, что кузнечик побывал во всех секторах. Тогда сектор с номером 25 был последним, так как из него кузнечик не сможет переместиться в иной сектор. До этого кузнечик не мог побывать дважды в одном секторе, иначе бы его путь зациклился, и в 25-й сектор он бы не попал. А побывав во всех секторах по разу, кузнечик переместился бы на 1 + 2 +… + 24 = 300 секторов, то есть на число, кратное 25. Значит, он начал свое путешествие в 25-м секторе, что невозможно.
7.14. 1) Предположим, что после построения по росту Вася выше стоящего сразу за ним Никиты более чем на 10 см. Назовем Васю и стоящих перед ним мальчиков высокими, а Никиту и стоящих после него мальчиков низкими. Разница в росте между любым высоким и любым низким мальчиком больше 10 см. Но при первоначальном построении, идя вдоль строя от Васи к Никите, мы на каком-то шаге перейдем от высокого к низкому. Эти два мальчика стояли рядом, поэтому разница в росте между ними не превышает 10 см. Противоречие.
Читать дальше
Конец ознакомительного отрывка
Купить книгу