Задача 9.6.На острове живут два племени: рыцарей и лжецов. Путешественник встретил двух островитян и спросил одного из них: «Вы оба рыцари?» Тот ответил «да» или «нет». Путешественник не смог определить, кто перед ним, и спросил у того же человека: «Вы из одного племени?» Тот ответил «да» или «нет», и теперь путешественник понял, из какого племени каждый из островитян. Кого он встретил?
Задача 9.7.Путешественник посетил деревню, каждый житель которой либо всегда говорит правду, либо всегда лжет. Все жители деревни встали в круг лицом к центру, и каждый сказал путешественнику про соседа справа, правдив ли тот. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей составляют лжецы. Определите и вы, чему она равна.
Задача 9.8.Путешественник на острове рыцарей и лжецов пришел в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.
– Интересно, а сколько среди вас рыцарей? – спросил он.
– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.
– Хорошо. Пусть каждый ответит на вопрос: кто твои соседи? – спросил путешественник.
На этот вопрос все ответили одинаково.
– Данных недостаточно! – сказал путешественник.
– Но сегодня день моего рождения, не забывай об этом, – сказал один из гостей.
– Да, сегодня день его рождения! – сказал его сосед. И путешественник смог узнать, сколько за столом рыцарей.
Сколько же их?
Задача 9.9.Саша и Маша загадали по натуральному числу и сказали их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нем оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша?
Задача 9.10.Есть 9 карточек с цифрами 1, 2…, 9. Их перетасовали, отдали четыре Ивану, четыре Василисе и одну Бабе-Яге. Иван сообщил вслух, что сумма цифр на его карточках оканчивается на 7.
1) Знает ли теперь Василиса карточку Бабы-Яги?
2) Знает ли теперь Баба-Яга набор карточек Василисы?
3) Может ли случится, что про какую-то карточку, кроме своей, Баба-Яга знает, у кого она находится?
Задача 9.11.Пять мудрецов играют в мафию. Среди них два мафиози, два мирных жителя и комиссар. Мафиози знают друг друга, комиссар знает все, мирные жители изначально ничего не знают. Мафиози могут говорить что угодно. Остальные говорят только то, в чем сами уверены. Состоялся разговор:
А: «Д – мирный житель».
Б: «Нет, Д – мафиози».
В: «Д не знает, кто я».
Г: «Д знает, кто я».
Д: «Б – мафиози».
Определите роли тех игроков, для кого это возможно.
Занятие 10
Околпаченные мудрецы
Три логика зашли в бар. На вопрос, все ли будут пить, первый ответил «Не знаю», второй – «Не знаю», а третий – «Да».
Это занятие составлено в форме вариаций на тему известной задачи о трех мудрецах. Его содержание в значительной степени позаимствовано из статьи М. Милга «Что сказал проводник?», опубликованной в журнале «Квант» (1973 г., № 8, стр. 38).
Задачи о мудрецах и колпаках сложнее большинства метаголоволомок предыдущего занятия по двум причинам.
Во-первых, одну задачу можно рассматривать как серию задач возрастающей сложности: каждый мудрец делает вывод на основании вывода предыдущего, который анализировал высказывание предыдущего, который анализировал… Чем выше уровень рекурсии, тем сложнее рассуждать за соответствующего мудреца. Во-вторых, вопрос «Что нового содержалось в такой-то информации?» на предыдущем занятии принимал форму подсказки, а на этом – парадокса.
Доступность столь непростого материала можно значительно повысить с помощью ролевой игры. Преимущество не столько в том, что детям нравится выходить к доске и играть роли мудрецов, сколько в абсолютной наглядности: утверждение «Когда на Ане был белый колпак, Сережа смог определить цвет своего колпака» понятнее, чем «Третий мудрец думает, что если бы на втором был белый колпак, то первый смог бы определить цвет своего колпака». Важно объявить, что мудрецы никогда не пытаются угадать ответ, а при недостатке информации честно отвечают «Не знаю». Можно предупредить, что за правильный ответ мудреца всего лишь похвалят, а за неправильный немедленно отрубят голову (обычно после пары «отрубленных» голов дети перестают отвечать наобум).
Читать дальше
Конец ознакомительного отрывка
Купить книгу