Рэймонд Смаллиан - Как же называется эта книга

Здесь есть возможность читать онлайн «Рэймонд Смаллиан - Как же называется эта книга» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Прочая детская литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как же называется эта книга: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как же называется эта книга»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как же называется эта книга — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как же называется эта книга», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, либо A - не признанный рыцарь, либо B - не отъявленный лжец (но мы опять не знаем, какая из двух альтернатив истинна).

Эта задача очень напоминает одну из задач о парах шкатулок (задачу 136 из гл. 9), в которой одна из двух шкатулок (какая именно - неизвестно) изготовлена либо Беллини, либо Челлини (но кем именно - опять-таки неизвестно).

268. Несколько нерешенных задач.

Я придумал несколько задач о гёделевых и дважды гёделевых островах, но решить их так и не собрался. Думаю, что читателю будет приятно испробовать свои силы на работе, сулящей неожиданности и, быть может, даже открытия.

268а.

Я уже говорил о том, что, насколько мне известно, ни одно из условий G, CG не следует из другого. Удастся ли вам доказать (или опровергнуть, что я считаю маловероятным) мою гипотезу? Для этого вам необходимо "построить" остров, для которого выполняется условие G, но не выполняется условие CG, а также остров, для которого выполняется условие CG, но не выполняется условие G. Построить остров означает в данном случае указать, кем он населен, кто из его обитателей рыцари и кто лжецы, какие обитатели состоят и какие не состоят членами одного клуба. (Кто из рыцарей обладает правом называться признанным рыцарем и кого из лжецов следует называть отъявленными лжецами, для решения этой задачи значения не имеет.)

268б.

Можете ли вы доказать (или опровергнуть) мою гипотезу о том, что на острове S1 не обязательно должны быть не признанные рыцари и не отъявленные лжецы (хотя непременно должны быть рыцари и лжецы)? Иначе говоря, можете ли вы построить остров, удовлетворяющий условиям E1, E2 и CG, на котором есть рыцари, но нет не признанных рыцарей? Можете ли вы построить остров, на котором есть лжецы, но нет не отъявленных лжецов? (На этот раз при построении островов необходимо указать не только, кто из его обитателей называется рыцарем или лжецом и состоит в том или ином клубе, но и указать, каких рыцарей следует считать признанными и каких лжецов отъявленными.)

268в.

Предположим, что все острова, о которых говорится в предыдущих задачах, допускают построение (интуитивно я убежден в том, что построить эти острова можно, хотя и не могу этого доказать). Какова минимальная численность населения каждого острова? Можете ли вы доказать, что при меньшей численности населения какое-то из условий будет нарушено?

В. ТЕОРЕМА ГЕДЕЛЯ

269. Полна ли эта система?

У одного логика хранится "Книга высказываний". Страницы книги перенумерованы последовательными натуральными числами, и на каждой странице записано ровно одно высказывание. Ни одно высказывание не занимает более одной страницы. Номер страницы, на которой записано высказывание X, назовем номером высказывания X.

Разумеется, каждое высказывание, внесенное в "Книгу высказываний", либо истинно, либо ложно. Некоторые из истинных высказываний настолько очевидны логику, у которого хранится книга, что он принял их за аксиомы своей логической системы. Помимо аксиом в эту систему входят правила вывода, позволяющие доказывать истинные высказывания, сводя их к ранее доказанным истинным высказываниям и аксиомам, и опровергать ложные высказывания. Логик совершенно уверен в своей непротиворечивости (то есть в том, что всякое высказывание, доказуемое в его системе, действительно истинно, а каждое высказывание, опровергаемое в его системе, действительно ложно), но сомневается в ее полноте (то есть в том, что в системе все истинные высказывания доказуемы, а все ложные опровержимы). Все ли истинные высказывания доказуемы в его системе? Все ли ложные высказывания опровержимы в его системе? На эти вопросы логик хотел бы получить ответ.

У нашего логика помимо "Книги высказываний" есть еще "Книга множеств". Ее страницы также перенумерованы последовательными натуральными числами, и на каждой странице приведено описание некоторого множества чисел.

(Под числами мы понимаем здесь целые положительные, или натуральные, числа 1,2,...,n,....) Любое множество, внесенное в "Книгу множеств", мы будем называть учтенным множеством.

Если задано натуральное число n то может случиться, что множество, записанное на n-й странице "Книги множеств", содержит число n. В этом случае мы будем называть n экстраординарным числом.

(% в этом абзаце где-то есть опечатка - прим. OCR %)

Кроме того, назовем число h сопряженным с числом n, если в высказывании, записанном на n-й странице "Книги высказываний", утверждается, что n - экстраординарное число.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как же называется эта книга»

Представляем Вашему вниманию похожие книги на «Как же называется эта книга» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как же называется эта книга»

Обсуждение, отзывы о книге «Как же называется эта книга» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x