1 ...7 8 9 11 12 13 ...86 41.
На этот раз A и B высказывают следующие утверждения:
A: B - рыцарь.
B: A - лжец.
Докажите, что либо один из них говорит правду, но это не рыцарь, либо один из них лжет, но это не лжец.
42. Табель о рангах.
На одном острове, где живут рыцари, лжецы и нормальные люди, лжецы считаются особами низшего ранга, нормальные люди - особами среднего ранга и рыцари - особами высшего ранга.
Мне очень нравится следующая задача. Двое людей A и B, о каждом из которых известно, что он либо лжец, либо нормальный человек, высказывают утверждения:
A: По рангу я ниже, чем B.
B: Не правда!
Можно ли определить ранг A или B? Можно ли установить, истинно или ложно каждое из этих двух утверждений?
43.
Трое людей A, B и C, о каждом из которых известно, что он либо рыцарь, либо лжец, либо нормальный человек, высказывают следующие утверждения: A: B по рангу выше, чем C.
B: C по рангу выше, чем A.
Затем у C спрашивают: "Кто старше по рангу - A или B?"
Что ответит C?
В. ОСТРОВ БАХАВА
На острове Бахава женщины во всем пользуются равными правами с мужчинами, поэтому женщин, как и мужчин, называют рыцарями, лжецами и нормальными людьми. В глубокой древности одна из правительниц острова Бахава по собственной прихоти издала указ, по которому рыцарю разрешалось вступать в брак только с лжецом, а лжецу - только с рыцарем (следовательно, нормальный человек мог вступать в брак только с нормальным человеком). С тех, пор в любой супружеской чете на острове Бахава либо оба супруга - нормальные люди, либо один из супругов - рыцарь, а другой - -- лжец.
Следующие три истории происходят на острове Бахава.
44.
Рассмотрим сначала супружескую чету - мистера и миссис A.
Они высказывают следующие утверждения:
Мистер A: Моя жена - не нормальный человек.
Миссис A: Мой муж - не нормальный человек.
Кто такой мистер A и кто такая миссис A - рыцарь, лжец или нормальный человек?
45.
Предположим, что мистер и миссис A высказали следующие утверждения:
Мистер A: Моя жена - нормальный человек.
Миссис A: Мой муж - нормальный человек.
Совпадает ли ответ этой задачи с ответом предыдущей задачи?
46.
В этой задаче речь пойдет о двух супружеских парах с острова Бахава: мистере и миссис A, мистере и миссис B. При опросе трое из них дали следующие показания.
Мистер A: Мистер B - рыцарь.
Миссис A: Мой муж прав: мистер B - рыцарь.
Миссис B: Что верно, то верно. Мой муж действительно рыцарь.
Кто каждый из этих четырех людей - рыцарь, лжец или нормальный человек и какие из трех высказываний истинны?
РЕШЕНИЯ
26. Ни рыцарь, ни лжец не могут сказать: "Я лжец"
(высказав подобное утверждение, рыцарь солгал бы, а лжец изрек бы истину). Следовательно, A, кем бы он ни был, не мог сказать о себе, что он лжец. Поэтому B, утверждая, будто A назвал себя лжецом, заведомо лгал. Значит, B - лжец. А так как C сказал, что B лгал, когда тот действительно лгал, то C изрек истину. Следовательно, C - рыцарь. Таким образом, B - лжец, а C - рыцарь.
(Установить, кем был A, не представляется возможным.)
27. Ответ в этой задаче такой же, как в предыдущей, но ход рассуждений несколько иной.
Прежде всего заметим, что B и C не могут быть оба рыцарями или оба лжецами, так как B противоречит C. Следовательно, B и C не могут быть оба рыцарями или оба лжецами: один из них рыцарь, а другой - лжец. Если бы A был рыцарем, то всего было бы два рыцаря. Следовательно, A не лгал и сказал. что среди троих персонажей рыцарь лишь один. С другой стороны, если бы A был лжецом, то утверждение о том, что из трех островитян A, B и C рыцарь лишь один, было бы истинным. Но тогда A, будучи лжецом, не мог бы высказать это истинное утверждение. Следовательно, на вопрос незнакомца A не мог ответить: "Среди нас один рыцарь". Следовательно, B неверно передал высказывание A, из чего мы заключаем, что B - лжец, а C - рыцарь.
28. Предположим, что A - лжец. Если бы это было так, то утверждение "По крайней мере один из нас лжец" было бы ложным (так как лжецы высказывают ложные утверждения).
Следовательно, в этом случае A и B были бы рыцарями. Таким образом, если бы A был лжецом, то он не был бы лжецом, что невозможно. Отсюда мы заключаем, что A не лжец, он рыцарь.
Но тогда высказанное A утверждение должно быть истинным.
Поэтому по крайней мере один из двух персонажей A и B в действительности лжец. Так как A - рыцарь, то лжецом должен быть B. Итак, A - рыцарь, а B - лжец.
29. Эта задача может служить неплохим введением в логику дизъюнкции. Пусть заданы два высказывания p, q.
Читать дальше
Конец ознакомительного отрывка
Купить книгу