И наоборот, экспликация семиотических элементов, скрытых в естественно-языковом высказывании, делает невозможным их смещение, часто происходящее даже в естественно-языковых текстах. В частности подобная экспликация существенно проясняет проблемы, связанные с «парадоксами математической логики», которые во многом оказываются следствием слишком простой семиотической модели, лежащей в основе математической логики, модели не производящей даже полученных Фреге семиотических различений.
Можно сформулировать следующий семиотический принцип, на который, как нам кажется, должно опираться любое логическое исчисление: каждое различение смыслов знака, считающееся существенным при семиотическом анализе логической системы, должно быть эксплицировано в обозначениях 19 19 Весьма вероятно, что сколько-нибудь общая формальная система такого рода мало чем отличалась бы от естественного языка.
.
В противном случае при формально логической записи не только не происходит прояснения естественно-языковых высказываний, но, напротив, смысл этих высказываний чрезвычайно затемняется. Дело в том, что в текстах на естественном языке правильное понимание смысла слова, включая и ту его часть, которая определяет логику умозаключения, достигается погружением слова в соответствующий контекст, либо в текст добавляется метатекст (естественно-языковые фрагменты, управляющие способом понимания высказывания). И то, и другое в формальных текстах отсутствует. В идеале они являются контекстно-свободными (хотя в действительности это не всегда так, иногда используются неэксплицированные правила понимания формальных текстов).
Семиотический анализ логических формализмов представляется нам весьма актуальной задачей, однако полный анализ такого рода чрезвычайно громоздок даже для простых формализмов. Здесь мы приведем лишь некоторые наиболее простые и очевидные примеры.
Парадоксы сокращенных обозначений
Хорошо известен широко употребляемый в математической логике способ обозначений, согласно которому простое написание некоторой формулы (например Р (х)) есть одновременно утверждение о ее истинности. Таким образом, с самого начала в формуле не отражены необходимые, вообще говоря (см. цитиров. выше работу Виндельбандта), различения суждения и оценки. Это не значит, что указанное различения полностью игнорируется. Однако отсутствие его явной экспликации приводит к заведомой двусмысленности, так как иногда необходимо использовать формулы безотносительно к утверждениям об их истинности (не говоря уже о том, что такое употребление формулы противоречит интуиции).
В случае достаточно сложного текста следить за различением подобных двусмысленностей без наличия большой практики становится очень трудно, да и при наличии таковой возможны логические ошибки. Контекстную зависимость смысла слов естественного языка можно рассматривать, таким образом, как механизм, эффективно препятствующий возникновению подобных трудностей. Кроме того, в естественных языках существуют специальные средства для необходимых семиотических различений, имеющие грамматический (например, артикль) или прагматический характер.
Представляет интерес на нескольких примерах проанализировать с семиотической точки зрения функционирование формально-логических систем. Рассмотрим фрагмент текста работы Гильберта и Аккермана, в котором вводятся аксиомы узкого исчисления предикатов [Гильберт, Аккерман, 1947, с. 97].
«К этим аксиомам мы присоединим теперь в качестве второй группы две аксиомы для “все” и “существует”»:
e) (x) F (x)→F (y);
f) F (y) → (Ex) F (x).
Первая из этих аксиом означает «Если предикат F выполняется для всех x, то он выполняется также для любого y».
Вторая формула читается так: «Если предмет F выполняется для какого-нибудь y, то существует x, для которого выполняется F».
Этот текст особенно интересен по следующим причинам:
1. В нем вводятся аксиомы.
2. Поясняется их естественно-языковое содержание, т.е. вводится способ понимания знаковой системы.
По замыслу основателей математической логики «…чего удалось достичь благодаря языку формул в математике, то же должно быть получено с его помощью и в теоретической логике, а именно: точная научная трактовка ее предмета. Логические связи, которые существуют между суждениями, понятиями и т.д. находят свое выражение в формулах, толкование которых свободно от неясностей, какие легко могли бы возникнуть при словесном выражении» [Гильберт, Аккерман, 1947, с. 17].
Читать дальше