Коллектив авторов - Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4 - Поверх методологических границ

Здесь есть возможность читать онлайн «Коллектив авторов - Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4 - Поверх методологических границ» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Детская образовательная литература, periodic, periodic, sociology_book, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Анализируется мировой и отечественный опыт преодоления ограничений, которые накладывают различные методологические подходы. Обсуждаются проблемы проведения междисциплинарных исследований. Рассматриваются возможности различных исследовательских методов. Внимание сосредоточивается на попытках соединения качественных и количественных методик исследования, в частности на отдельных разновидностях так называемого качественного сравнительного анализа (QCA).
Для научных работников, студентов, аспирантов.

Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И наоборот, экспликация семиотических элементов, скрытых в естественно-языковом высказывании, делает невозможным их смещение, часто происходящее даже в естественно-языковых текстах. В частности подобная экспликация существенно проясняет проблемы, связанные с «парадоксами математической логики», которые во многом оказываются следствием слишком простой семиотической модели, лежащей в основе математической логики, модели не производящей даже полученных Фреге семиотических различений.

Можно сформулировать следующий семиотический принцип, на который, как нам кажется, должно опираться любое логическое исчисление: каждое различение смыслов знака, считающееся существенным при семиотическом анализе логической системы, должно быть эксплицировано в обозначениях 19 19 Весьма вероятно, что сколько-нибудь общая формальная система такого рода мало чем отличалась бы от естественного языка. .

В противном случае при формально логической записи не только не происходит прояснения естественно-языковых высказываний, но, напротив, смысл этих высказываний чрезвычайно затемняется. Дело в том, что в текстах на естественном языке правильное понимание смысла слова, включая и ту его часть, которая определяет логику умозаключения, достигается погружением слова в соответствующий контекст, либо в текст добавляется метатекст (естественно-языковые фрагменты, управляющие способом понимания высказывания). И то, и другое в формальных текстах отсутствует. В идеале они являются контекстно-свободными (хотя в действительности это не всегда так, иногда используются неэксплицированные правила понимания формальных текстов).

Семиотический анализ логических формализмов представляется нам весьма актуальной задачей, однако полный анализ такого рода чрезвычайно громоздок даже для простых формализмов. Здесь мы приведем лишь некоторые наиболее простые и очевидные примеры.

Парадоксы сокращенных обозначений

Хорошо известен широко употребляемый в математической логике способ обозначений, согласно которому простое написание некоторой формулы (например Р (х)) есть одновременно утверждение о ее истинности. Таким образом, с самого начала в формуле не отражены необходимые, вообще говоря (см. цитиров. выше работу Виндельбандта), различения суждения и оценки. Это не значит, что указанное различения полностью игнорируется. Однако отсутствие его явной экспликации приводит к заведомой двусмысленности, так как иногда необходимо использовать формулы безотносительно к утверждениям об их истинности (не говоря уже о том, что такое употребление формулы противоречит интуиции).

В случае достаточно сложного текста следить за различением подобных двусмысленностей без наличия большой практики становится очень трудно, да и при наличии таковой возможны логические ошибки. Контекстную зависимость смысла слов естественного языка можно рассматривать, таким образом, как механизм, эффективно препятствующий возникновению подобных трудностей. Кроме того, в естественных языках существуют специальные средства для необходимых семиотических различений, имеющие грамматический (например, артикль) или прагматический характер.

Представляет интерес на нескольких примерах проанализировать с семиотической точки зрения функционирование формально-логических систем. Рассмотрим фрагмент текста работы Гильберта и Аккермана, в котором вводятся аксиомы узкого исчисления предикатов [Гильберт, Аккерман, 1947, с. 97].

«К этим аксиомам мы присоединим теперь в качестве второй группы две аксиомы для “все” и “существует”»:

e) (x) F (x)→F (y);

f) F (y) → (Ex) F (x).

Первая из этих аксиом означает «Если предикат F выполняется для всех x, то он выполняется также для любого y».

Вторая формула читается так: «Если предмет F выполняется для какого-нибудь y, то существует x, для которого выполняется F».

Этот текст особенно интересен по следующим причинам:

1. В нем вводятся аксиомы.

2. Поясняется их естественно-языковое содержание, т.е. вводится способ понимания знаковой системы.

По замыслу основателей математической логики «…чего удалось достичь благодаря языку формул в математике, то же должно быть получено с его помощью и в теоретической логике, а именно: точная научная трактовка ее предмета. Логические связи, которые существуют между суждениями, понятиями и т.д. находят свое выражение в формулах, толкование которых свободно от неясностей, какие легко могли бы возникнуть при словесном выражении» [Гильберт, Аккерман, 1947, с. 17].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ»

Представляем Вашему вниманию похожие книги на «Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ»

Обсуждение, отзывы о книге «Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x