Нанокомпозитные материалы появились в качестве альтернативы ранее изучаемым и используемым микрокомпозитным и монолитическим материалам, поскольку они позволили преодолеть ряд ограничений, связанных с синтезом и контролем за элементным составом и стехиометрией [2]. Ряд исследователей считает их одним из основных материалов XXI в. с точки зрения сочетания уникальных свойств, ненаблюдаемых в обычных композиционных материалах [3], при том, что первые публикации, посвященные данной проблематике, появились лишь в начале 1992 г. [4]. Столь большой интерес к изучению нанокомпозитов объясняется кардинальным изменением свойства всего композита в целом при уменьшении размера составляющих его наночастиц (табл. 1) [5].
Таблица 1
Взаимосвязь между размерами составляющих нанокомпозит частиц и всей системы в целом
Нанокомпозитные материалы в зависимости от типа образующей их матрицы можно классифицировать по следующим категориям:
1. Металлические нанокомпозиты.
2. Керамические нанокомпозиты.
3. Полимерные нанокомпозиты.
4. Смешанные нанокомпозиты.
С точки зрения применения в сенсорах, катализаторах и суперконденсаторах нанокомпозитные материалы на основе полупроводниковых оксидов переходных металлов являются одними из наиболее перспективных, так как обладают исключительными адсорбционными свойствами, высокой каталитической активностью и электропроводимостью, кроме того, имеют низкую стоимость [6– 8]. Такие свойства проявляют композиты на основе оксидов олова, цинка, индия, вольфрама, титана, кремния, комплексы на основе калия и хрома [9–11], а также биметаллические оксиды.
Важной задачей синтеза газсорбирующих, каталитически активных и электропроводящих нанокомпозитов, решаемой в настоящее время, является создание материалов с варьируемой проводимостью, высокой реактивной способностью и селективностью к газам и жидкостям [12–15]. Один из способов решения подобных задач – введение в матрицу определенного типа металла или оксида металла – наполнителя/допанта. Тип наполнителя влияет на характер взаимодействия составляющих нанокомпозита, наблюдаются изменения их морфологии, атомной и электронной структуры и, как следствие, свойств композита в целом. Электронная и атомная структура, тип химической связи, поверхностная энергия и химическая активность всех составляющих нанокомпозита непосредственно связаны с течением окислительно-восстановительных реакций, определяющих его как каталитическую, так и электрическую активность. Следовательно, определение взаимосвязи между структурными и физическими характеристиками является одним из ключевых моментов в исследовании нанокомпозитных систем и выявлении перспективных направлений их применения в различных областях промышленности, науки и техники.
1.1. Металлооксидные наноструктуры как активные центры адсорбции нанокомпозитов с различными матрицами
В нанокомпозитах на основе 3d-металлов или их оксидов роль центров адсорбции часто играют кристаллиты/наночастицы металлсодержащей компоненты, при этом их способность к адсорбции и электропроводимости зависит от размера, формы, структуры и степени окисления металла [16–18]. Морфология и структура металлоксидных активных центров в размерной шкале от нано- до микроуровня являются чрезвычайно важными в регулировании химических и физических свойств материала. Так, одно из направлений мировой науки по синтезу газсорбирующих нанокомпозитов связано с увеличением и развитием поверхности активных адсорбирующих центров [12–15, 19], которые зависят от размера, формы и структуры кристаллитов и наночастиц неорганической составляющей [16–18, 20]. Кристаллиты/наночастицы оксидов металлов в составе нанокомпозита могут формироваться в виде кристаллических агломератов (коралловидные кристаллиты), цветкообразные кристаллиты, наночастицы правильной формы (ромбовидные, кубоктаэдрические, сферические, кубические) с большой плотностью на единице площади и большой площадью покрытия. В ряде работ на основе теоретических расчетов было показано, что в зависимости от формы металлоксидных наночастиц во-первых существуют поверхности стехиометрически стабильные при высоких температурах, во-вторых на поверхностях с различными кристаллографическими плоскостями интенсивность адсорбции различна и может достигать 80 % [21–23]. Так, для металлов, обладающих гранецентрированной кубической (ГЦК) решеткой, равновесная форма наночастиц – это кубооктаэдр, ограненный плоскостями типа (001) и (111) [24]. Однако, как свидетельствуют DFT-расчеты [26] и некоторые экспериментальные исследования, при обработке наночастиц металлов с ГЦК-структурой различными газами их форма может существенно изменяться. Такое изменение формы наночастиц объясняется изменением поверхностной энергии граней растущей наночастицы при адсорбировании на них молекул газа, а следовательно, и степень адсорбирования атомов газа на поверхности также может меняться для наночастицы с правильной (кубоктаэдрической, сферической, кубической) формой. Основное применение такого эффекта в настоящее время – в катализе. Применение в качестве адсорбирующих центров в сенсорах единично и их фундаментальные механизмы образования и взаимодействия с матрицами практически не изучены.
Читать дальше