Гидроэлектростанции могут различаться: по напору – высоконапорные (горные) и низконапорные (равнинные); по зарегулированности водотока – с суточным, сезонным, годовым, многолетним регулированием; по мощности.
Электростанции объединены электрическими сетями разного уровня напряжения на параллельную работу в электроэнергетические системы. Электрические связи между энергетическими системами формируют единую энергосистему страны (ЕЭС).
Электрические и тепловые сети являются аппаратом распределения (транспорта) энергии в энергетической системе. Основными технологическими элементами электросетевого комплекса служат линии электропередачи (воздушные и кабельные) и трансформаторные подстанции с соответствующим вспомогательным оборудованием. Различают магистральные и распределительные электрические сети; последние доводят электрическую энергию от узлов нагрузки до абонентских установок потребителей. Линии электропередачи напряжением 0,4–1150 кВ имеют общую протяженность порядка 3 млн км, в том числе магистральные электросети напряжением 220–1 150 кВ – 157 тыс. км.
Обслуживанием ЛЭП и подстанций занимается предприятия электрических сетей (ПЭС). В ведении этих предприятий находятся также трансформаторные подстанции (ТП) и распределительные устройства (РП). Они трансформируют электроэнергию с высокого (110, 35, 6–10 кВ) на низкое, потребительское, напряжением 220–380 кВ и распределяют ее в районах и микрорайонах города для жилых и общественных зданий.
Для обеспечения надежного энергоснабжения и качества электроэнергии в соответствии с требованиями технических регламентов в масштабе всей ЕЭС создана система оперативно-диспетчерского управления (ОДУ). Она построена по иерархическому принципу; ее верхний уровень представлен организацией – системным оператором (СО) ЕЭС России, которому подчинены органы ОДУ объединенных и районных энергосистем. Свои функции органы ОДУ осуществляют через централизованное управление технологическими режимами работы объектов электроэнергетики и электропотребляющих установок потребителей.
К объектам теплоэнергетики относятся теплоисточники (паровые и водогрейные котельные), а также тепловые сети (магистральные и распределительные) с трубопроводами, насосными станциями и тепловыми пунктами. Тепловые сети осуществляют передачу и распределение тепловой энергии. Они делятся по виду теплоносителя на водяные и паровые. Задачей тепловых сетей является распределение тепловой энергии внутри отдельных районов теплоснабжения. Предприятия тепловых сетей (ПТС) эксплуатируют магистральные и распределительные паро- и теплопроводы в городах и населенных пунктах.
Котельные имеют разную ведомственную принадлежность (муниципальные, промышленные и др.). Среди них выделяются централизованные теплоисточники, обслуживающие целый район теплоснабжения или группу разных потребителей, и децентрализованные, прикрепленные к конкретным абонентам. В России централизованно вырабатывается около 70 % тепловой энергии. Но дальность передачи тепла, в отличие от электроэнергии, ограничена по технико-экономическим соображениям: для пара – до 1,5–2 км, а для горячей воды – до 20–30 км.
Главными функциями теплоэнергетики являются:
● надежное и бесперебойное обеспечение потребителей необходимыми им теплоносителями с требуемыми объемными и качественными параметрами;
● поддержание теплового комфорта в жилых и общественных зданиях (в строгом соответствии с температурами наружного воздуха).
Данные функции должны реализовываться на основе внедрения экономически и экологически оптимальных схем теплоснабжения городов и сельских районов страны.
Тепловая энергия в виде пара и горячей воды широко применяется в различных отраслях народного хозяйства для технологических нужд, отопления, вентиляции и горячего водоснабжения. Следует подчеркнуть, что электроэнергия и теплоэнергия – взаимозаменяемые и конкурирующие энергоносители. Особенно это касается силовых и среднетемпературных процессов, где в качестве энергоносителя может использоваться как пар различных параметров, так и электричество. При благоприятных экономических предпосылках электроэнергия может заменять горячую воду в низкотемпературных процессах, обеспечивая более качественное регулирование параметров и потребительский комфорт.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Читать дальше