1 ...6 7 8 10 11 12 ...17 Рисунок 3.1 – Общий план строения клетки животных организмов
Сложно организованы ядра эукариотических клеток. Они имеют двуслойную оболочку – кариотеку, образованную мембранами, которая отделяет ядро от цитоплазмы; ядерный сок или кариоплазму, содержащую хроматин и ядрышко.
Клеточные структуры в соответствии с их функциями можно разделить на три типа:
1) поверхностный аппарат клетки, включающий плазматическую мембрану и ее производные;
2) метаболический аппарат (цитоплазма и ее органоиды);
3) наследственный или ядерный аппарат клетки.
3.2 Поверхностный аппарат клетки
Поверхностный аппарат клетки имеет сложное строение. В основе его лежит плазматическая мембрана, с которой снаружи связан надмембранный комплекс – гликокаликс, а изнутри – опорно-сократительный аппарат гиалоплазмы. Плазмолемма (plasmolemma), или внешняя клеточная мембрана, – самая толстая из цитомембран: её толщина 10 нм. Плазмолемма состоит из билипидного слоя, встроенных в него белковых молекул и гликокаликса (рисунок 3.2).
А – строение; Б – участие в рецепции: I надмембранный слой (гликокаликс); II – липопротеиновая мембрана; 1 – 6 – белки.
Рисунок 3.2 – Плазмалемма
Лежащий в основе плазмолеммы билипидный слой образуют полярные молекулы фосфолипидов (с гидрофильной головкой и гидрофобными хвостиками), а также молекулы холестерина. Билипидный слой асимметричен, почти все гликолипиды сконцентрированы в наружном монослое, в котором, кроме того, сосредоточены высокомолекулярные, более насыщенные жирные кислоты, в отличие от внутреннего слоя, в состав которого входят ненасыщенные жирные кислоты. Внутренняя сторона мембраны по отношению к наружной заряжена более отрицательно. В билипидном слое находятся различные белки: интегральные, полуинтегральные и субповерхностные. Белки обеспечивают такие функции клетки как рецепцию, регулируемый транспорт, структурную организацию процессов метаболизма и др. Интегральные белковые молекулы, прочно ассоциированные липидами, нельзя выделить из мембран, не разрушив последних, в отличие от легкоэстрагируемых периферических белков, расположенных вне билипидного слоя, но либо ковалентно связанных непосредственно с липидами, либо через олигосахарид – с фосфатидилинозитолом наружного монослоя. Интегральные белки могут быть соединены с многочисленными углеводными остатками и, по существу являться гликопротеинами. От консистенции билипидного слоя во многом зависит активность мембраны.
Снаружи плазмолемму покрывает гликокаликс (glycocalix) – слой полисахаридов, в котором находятся разветвленные молекулы олигосахаридов, гликолипидов и гликопротеинов, многие из которых выступают из мембраны в виде «антенн-рецепторов». Благодаря им, клетка способна ориентироваться в окружающей среде, распознавая себе подобных, участвовать в образовании ткани, воспринимать различные раздражения (звуковые, химические, температурные, механические и другие).
Среди белковых молекул плазмолеммы встречаются структурные, транспортные белки – переносчики тех или иных веществ, белки, образующие поры, или гидрофильные каналы и ферменты. Белки – переносчики электронов. Состав гликолипидов гликокаликса выделяют класс ганглиозидов, участвующих в работе химических синапсов нервных клеток. Гликолипидам принадлежит важнейшая роль в рецепторной функции мембраны. Состав гликолипидов меняется в малигнизированных клетках (клетках злокачественной опухоли). Гликолипиды эритроцитов определяют группу крови.
Важный компонент мембран животной клетки – стероидный липид холестерол, определяющий их консистенцию. Несмотря на то, что мембраны различаются по химическому составу, все они выполняют барьерную функцию и ограничивают свободную диффузию веществ.
Плазмолемма выполняет следующие функции:
1) разграничительную – отделяет содержимое клетки от внешней среды;
2) рецепторную – воспринимает из окружающей среды раздражения различной природы;
3) транспортную – регулирует обмен веществ между клеткой и окружающей средой, обладая уникальной избирательной проницаемостью.
Транспортная функция обусловлена необходимостью обеспечить в клетке оптимальное значение рН и соответствующую ионную концентрацию для эффективной работы ферментов; доставить питательные вещества, которые служат источником энергии и сырьем для синтеза собственных белков; вывести вредные продукты метаболизма (диоксид углерода, пероксид водорода, аммиак, нерастворимые соли), а также гормоны, медиаторы и другие, биологически активные вещества; создать ионный градиент для электропроводимости поверхностной мембраны, осуществления нервной деятельности. Вещества поступают в клетку и выводятся из нее различными способами: диффузия, осмос, фагоцитоз и другие (рисунок 3.3).
Читать дальше
Конец ознакомительного отрывка
Купить книгу