— Да не нужна тебе никакая алгебра! — покатился со смеху Грифон. — Ты только придумываешь, что тебе нужна алгебра!
— В таком случае мне в голову приходит только один способ: подбирать числа путем проб и ошибок, пока, в конечном счете, не догадаюсь, сколько всего было пирожков.
— Не нужны тебе никакие догадки! — снова завопил Грифон. — Догадки тут ни при чем, и алгебра тут ни при чем! Слыхал я, что в школах ваших учат решать такие вот задачки с помощью какой-то там алгебры, а я вот в школу не ходил, так что придумал свой собственный метод — и уж поверь мне, не хуже того, что у вас там в ваших школах преподавают!
— Что вы говорите? — сказала Алиса. — Мне было бы очень интересно узнать про ваш метод. В чем он заключается?
— Рассказываю, — принялся объяснять Грифон, — твой первый вопрос был задан правильно: сколько всего было пирожков?
— Таким образом, — сказала Алиса, — если бы я знала, сколько всего было пирожков, то найти решение задачки мне не составило бы особого труда.
— Верно, — подтвердил Грифон. — А как вычислить, сколько было пирожков? Вот какой метод я придумал: нам известно, что у Шляпника вначале было в три раза больше пирожков, чем у Мартовского Зайца. То есть если поделить все пирожки на равные части, то у него было три части пирожков, а у Зайца — одна часть. Другими словами, из четырех частей у Шляпника было три части, или три четверти всех пирожков.
— Правильно, — согласилась Алиса. — У него было три четверти, а у Зайца одна четверть, а поскольку три четверти ровно втрое больше, чем одна четверть, то и получается, что у Шляпника вначале было пирожков втрое больше, чем у Зайца.
— С этим все ясно, — сказал Грифон. — Пошли дальше. После того как Шляпник отдал один пирожок Зайцу, у него все еще оставалось вдвое больше пирожков, чем у Зайца. А раз так, то какую долю от общего числа пирожков имел Шляпник?
— Сейчас посмотрим, — сказала Алиса. — Если рассуждать таким же образом, то у Шляпника было две части пирожков, а у Зайца — одна часть. Другими словами, на каждый пирожок Зайца приходилось по два пирожка Шляпника, иначе говоря,
из каждых трех пирожков два были у Шляпника, а один у Зайца. Это значит, что у Шляпника были две трети пирожков, а у Мартовского Зайца — одна треть.
— Точно, так все и было, — подтвердил Грифон.
— И что нам это дает? — спросила Алиса.
— А вот что, — ответил Грифон, — и тут мы подходим к самой сути вопроса. Отдав Мартовскому Зайцу всего один пирожок, Шляпник уменьшил свою долю с трех четвертей до двух третей. Вот нам и надо выяснить, какую долю составляет это уменьшение? Другими словами, какую долю от всех пирожков нужно забрать, чтобы из трех четвертей осталось две трети?
— Боюсь, я не совсем понимаю, — упавшим голосом произнесла Алиса.
— Спрошу иначе: сколько будет, если от трех четвертей отнять две трети? Ответ на этот вопрос и даст нам то количество пирожков, которое нужно забрать из трех четвертей, чтобы осталось две трети!
— А, поняла! — обрадовалась Алиса. — Так, три четверти минус две трети? Я думаю, для начала удобнее перевести обе дроби в двенадцатые.
— Да уж не мешало бы! — согласился Грифон.
— Итак, три четверти — это девять двенадцатых, а две трети — восемь двенадцатых, так что разница между ними — одна двенадцатая.
— Молодчина, — похвалил Грифон. — Теперь-то можешь решить задачку?
— Я все еще не понимаю, как! — ответила Алиса.
— Значит, ты не ухватила сути! — заявил Грифон. — А суть в том, что, отдав Зайцу один пирожок, Шляпник отдал ему одну двенадцатую от общего количества пирожков. Стало быть, один пирожок — это одна двенадцатая всех пирожков. Следовательно...
— Следовательно, всего было двенадцать пирожков! — в азарте закричала Алиса. — Значит, вначале у Шляпника было девять пирожков — то есть три четверти от двенадцати, а у Мартовского Зайца три — и девять как раз втрое больше трех! Потом Шляпник отдал один пирожок Зайцу, и у него осталось восемь пирожков, а у Зайца стало четыре, и поэтому у Шляпника было теперь вдвое больше пирожков, чем у Зайца. Итак, всего было двенадцать пирожков!
— Может, ответишь теперь на вопрос задачки? — напомнил Грифон.
— Ой, чуть не забыла! — спохватилась Алиса. — Ведь вопрос состоял в том, сколько пирожков должен отдать Шляпник Зайцу, чтобы пирожков у них оказалось поровну. Итак, теперь у Шляпника восемь, а у Мартовского Зайца четыре пирожка. Чтобы у них оказалось пирожков поровну, у обоих должно быть по шесть пирожков. Поэтому Шляпник должен отдать Зайцу еще два пирожка. Значит, правильный ответ — два.
Читать дальше