Эмилия Александрова - Стол находок утерянных чисел

Здесь есть возможность читать онлайн «Эмилия Александрова - Стол находок утерянных чисел» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1988, Издательство: Детская Литература, Жанр: Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Стол находок утерянных чисел: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Стол находок утерянных чисел»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.
Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку. Это еще одна из книг этих авторов.

Стол находок утерянных чисел — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Стол находок утерянных чисел», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

— Негусто, — вздохнул Главный те рятель, уныло допивая остывший кофе.

— Но и не так уж мало, — бодро возразил я. — Всё-таки некоторые ассоциации привели нас к существенным результатам. И потому — двинемся за новыми!

Двинуться, однако, не удалось, потому что в это время к нам подошёл тот самый человек, который расшифровал название ансамбля.

— Извините великодушно, — сказал он, — у вас такая удивительная собака! Вот я и подумал, что вы, должно быть, тоже любите математику…

— Конечно, любим! А иногда и знаем, — сказала девочка, лукаво взглянув на меня.

— Очень, очень приятно! — обрадовался незнакомец. — Недаром я сразу почувствовал, что здесь мне помогут. Видите ли, я дрессировщик. Выступаю с группой обезьян. Недавно я выписал для них бананы. Мои обезьяны без бананов не могут, и я всегда делаю большие запасы. На сей раз поставщик оказался шутником. Он заявил, что числа отправленных бананов не помнит. Знает лишь, что оно было наименьшим из возможных, оканчивается четвёркой, и что эта четвёрка, будучи переставлена в начало числа, увеличит его вчетверо. Так вот, если я отгадаю, сколько штук бананов отправлено, он обязуется посылать мне каждый месяц столько же, и мои обезьяны будут обеспечены бананами до скончания века. Не поможете ли мне узнать, что это за число?

С величайшим удовольствием отвечал я Находить числа моя святая - фото 31

— С величайшим удовольствием! — отвечал я. — Находить числа — моя святая обязанность. Правда, ваш случай не из лёгких. Но у меня есть один приём, и он нас выручит. Итак, мы ищем число с четвёркой на конце, и эта четвёрка, очутившись в начале числа, увеличит его вчетверо. Так узнаем сперва зто учетверённое число. Попробуем неизвестное нам число отправленных бананов умножить на 4. «Как?! — воскликнете вы. — Как же это возможно? Ведь оно неизвестное!» Да, отвечу я, но не совсем. У него есть кончик — четвёрка. Ухватимся за этот кончик и попробуем вытащить всё число. Для начала умножим четвёрку на 4, чтобы получить последнюю цифру учетверённого числа. 4x4=16. Вот вам и число единиц в новом числе: это 6. Причём в уме у нас остаётся единица, которая перейдёт в следующий разряд. А теперь… Теперь вступает в силу мой приём. Умножим последнюю цифру учетверённого числа 6 на 4, не забыв прибавить к произведению единицу. Получим 25: 6x4=24; 24+1=25. Вот у нас появилась и вторая цифра с конца — 5, при этом 2 остаётся в уме. Снова умножаем 5 на 4 и прибавляем к произведению двойку. Получаем 22: 5x4=20; 20+2=22. Вот вам и третья цифра с конца — 2, а два придерживаем в уме. Снова умножаем 2 на 4, прибавляем двойку и получаем 10. Теперь у нас уже есть четвёртая цифра с конца — 0, да единица в уме. Умножаем 0 на 4, затем прибавляем к произведению единицу и получаем 1: 0x4=0; 0+1=1. Это уже пятая цифра с конца. И наконец, умножив 1 на 4, получаем шестую с конца цифру — 4. Так, шаг за шагом, мы вытащили из неизвестности учетверённое число бананов 410256. Остаётся разделить его на четыре, чтобы найти искомое. Но делать это незачем. Ведь по условию, вернув четвёрку в конец числа, мы его сделаем вчетверо меньше. И, значит, число это — 102564. На всякий случай проверим: умножим 102564 на 4 и получим… 410256. Ошибки нет. Число найдено. И довольно-таки солидное число. Похоже, обезьяны ваши с голода не умрут…

Дрессировщик был вне себя от радости. Он превозносил и меня, и мой способ, и щедрость своего поставщика, который собирается заплатить такой дорогой ценой за решение задачи.

Но я сказал, что поставщик его оказался не только щедрым, но и милосердным. Ведь если бы в условии задачи не было сказано, что надо найти наименьшее из возможных чисел, так пришлось бы нам вычислять число посланных бананов до бесконечности. Потому что 102564 — это период бесконечного целого периодического числа. И, продолжив наше умножение тем же способом, мы снова и снова получим те же цифры, то же число. Нарастая справа налево, оно будет бесконечно повторяться и всегда при этом удовлетворять условию задачи. Потому что, каким бы длинным оно ни было, из скольких бы периодов не состояло, четвёрка, переставленная с конца в начало, непременно увеличит его вчетверо.

И тут меня перебила девочка.

— Какое совпадение! — ахнула она. — Какое удивительное совпадение! 102564 — это ведь то самое число, которое показывали в цирке воздушные гимнасты! Только там оно было периодом дроби, а здесь — целого числа…

Вот как! А я и не заметил… Впрочем, если это и совпадение, так чисто житейское, но никак не математическое. Почему? Да потому, что в том случае, когда последняя цифра числа, переставленная в начало, увеличивает его во столько же раз, число всегда будет одновременно периодом целого периодического числа и периодом дроби…

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Стол находок утерянных чисел»

Представляем Вашему вниманию похожие книги на «Стол находок утерянных чисел» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Авессалом Подводный
Джеймс Ганнибал - Бюро находок
Джеймс Ганнибал
Сергей Лысков - Магия чисел
Сергей Лысков
Эмилия Дарк - Под столом босса
Эмилия Дарк
Отзывы о книге «Стол находок утерянных чисел»

Обсуждение, отзывы о книге «Стол находок утерянных чисел» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x