Наконец было принято решение на всех установленных к тому времени пяти с половиной тысячах машин заменить подшипники и откорректировать их посадку. Только после такого титанического труда проблемы с подшипниками прекратились. Но осталась масса других. В том числе: утечки и потери гексафторида урана, нарушения вакуумных объемов, повышенная коррозия и многие другие. Объяснялось это спешкой в проектировании и изготовлении оборудования. По сути в процессе промышленной эксплуатации происходили испытания серийных машин и их "доводка до ума", исследовались свойства конструкционных материалов и химические процессы их взаимодействия с агрессивной газовой средой, выяснялась полная непригодность отдельных узлов и технические недостатки.
На основе полученного опыта в каскадные цепочки ввели промежуточные установки для отбора конечного продукта и очистки газа от примесей продуктов разложения, натекающего воздуха, водяных паров. Кроме того были введены конденсационно-испарительные установки для отделения гексафторида урана от примесей. В качестве хладагента в них использовалась твердая углекислота - сухой лед. Специальным распоряжением Правительства СССР все запасы сухого льда Свердловского хладокомбината предписывалось передавать на технологические цели. Жители Свердловска остались без мороженого. Но сухого льда все равно не хватало, и тогда использовалась чрезвычайно взрывоопасная смесь ацетона и жидкого кислорода, пока такую практику не запретили.
Но коррозионные потери гексафторида урана оставались недопустимо высокими. Агрессивный газ, вступая во взаимодействие с металлом оборудования, разлагался, соединения урана оседали на нутренних поверхностях агрегатов. По этой причине не удавалось получить необходимую 90%-ную концентрацию урана-235. Значительные потери в многоступенчатой системе разделения не позволяли получить концентрацию выше 40-55%.
Начальник технического отдела Н. М. Синёв предложил иную конструкцию газодиффузионной машины для конечного этапа технологической цепочки, на котором высокообогащенный газ несет наибольшие потери. Агрегат должен был иметь уменьшенные размеры и минимальный объем заполнения с предельно малыми поверхностями, контактирующими с гексафторидом урана. Такая машина была сконструирована и изготовлена в Горьком, получив название ОК-6. Этими аппаратами заменили четыре участка машин ОК-7, примыкавших к точке отбора конечного продукта. В мае 1949 года новую технику обкатали. 9 июня 1949 года машины ОК-6 включились в работу. Этот день можно считать датой пуска в рабочую эксплуатацию первого советского диффузионного завода. Но расчетную концентрацию урана-235 получить не удалось.
29 августа 1949 года была испытана первая советская атомная бомба. Увы, но никакого вклада в этот успех завод Д-1 не внес. Взорванный заряд имел начинку из плутония, полученного на заводе №817 в Челябинске-40.
В октябре в Верх-Нейвинск прибыл специальный поезд. Три классных вагона, включая салон-вагон, были поставлены на путях напротив здания заводоуправления. Берия лично приехал разбираться с провалами в работе. С ним прибыли начальник ПГУ Б. Л. Ванников, И. В. Курчатов, М. Г. Первухин и другие руководители атомного проекта. Руководителей и ведущих сотрудников предприятия по одному вызывали в вагон и там выясняли степень вины каждого, а так же причины неудач. Директор завода А. Л. Кизима был снят с работы. Директором снова назначили А. И. Чурина, а главным инженером снова стал М. П. Родионов. Группа ученых из Лаборатории №2 была переведена на комбинат для постоянной работы и передачи опыта. Огромные научные силы, включая ведущих химиков страны, были брошены на решение проблемы коррозии металлов под воздействием гексафторида урана.
Диффузионные машины разбирались по винтику, продукты разложения газа собирались и изучались. На статорах и роторах электродвигателей обнаруживали сотни граммов зеленого порошка - тетрафторида урана, продукта взаимодействия гексафторида с железом. Единственной надежной мерой борьбы с такими потерями являлась полная замена двигателей компрессоров. Но для этого требовалось сконструировать и изготовить другие двигатели, металл которых перестанет взаимодействовать с агрессивным газом. А пока следовало уменьшить потери на пористых фильтрах и других внутренних поверхностях оборудования.
По предложению профессора В. А. Каржавина и немецкого инженера П. Тиссена провели антикоррозионную обработку каскадов горячей фтор-воздушной смесью. На всех поверхностях образовалась тонкая и прочная пленка, препятствующая взаимодействию гексафторида урана с металлами.
Читать дальше