
На этой стадии потоки, видимо, совершенно свободно проходят через изоляцию значительной толщины, и особенно интересно изучить их поведение. Для этой цели удобно подсоединить к контактам катушки два металлических шара, которые можно помещать на любом желаемом расстоянии, Рис. 8. Шары предпочтительнее, чем пластины, так как в этом случае можно лучше наблюдать разряд. Внося диэлектрические тела между шарами, можно наблюдать красивые явления разряда. Если шары расположены достаточно близко, и искра играет между ними, то при внесении между ними тонкой эбонитовой пластинки искра, немедленно исчезает, и разряд расширяется в интенсивно светящийся круг нескольких дюймов в диаметре, если шары достаточно большие. Прохождение потоков нагревает и через некоторое время размягчает резину настолько, что этим способом можно склеить вместе две пластины. Если шары расположены настолько далеко друг от друга, что искры между ними нет, и даже если они расположены за пределами разрядного расстояния, внесение толстой пластины из стекла сразу возбуждает разряд, идущий от шаров к стеклу в форме светящихся потоков. Кажется почти, будто эти потоки проходят через диэлектрик. На самом деле это не так, потому что потоки существуют благодаря молекулам воздуха, которые чрезвычайно возбуждаются в пространстве между противоположно заряженными поверхностями шаров. Когда нет никакого другого диэлектрика, кроме воздуха, бомбардировка идет, но она очень слабая, чтобы её можно было увидеть; от внесения диэлектрика индукционный эффект сильно увеличивается и, кроме того, летящие молекулы воздуха встречают препятствие, и бомбардировка становится настолько интенсивной, что потоки начинают светиться. Если бы мы могли каким-нибудь механическим способом вызвать такое чрезвычайное возбуждение молекул, то могли бы получить такое же явление. Струя воздуха, вытекающего через небольшое отверстие под огромным давлением и ударяющаяся об изоляционный материал, такой как стекло, может светиться в темноте, и может быть возможным получить таким способом фосфоресценцию стекла или других изоляторов.
Чем выше диэлектрическая проницаемость вносимого диэлектрика, тем мощнее производимый эффект. Благодаря этому потоки проявляются при чрезвычайно высоких потенциалах, даже при толщине стекла от полтора до двух дюймов. Но кроме нагревания, вызванного бомбардировкой, определенное нагревание идет, без сомнения, и в диэлектрике, причем в стекле значительно больше, чем в эбоните. Я отношу это явление к большей диэлектрической проницаемости у стекла, вследствие которой, при одинаковой разности потенциалов, в стекло вбирается большее количество энергии, чем в резину. Это как если подсоединить к батарее медный и латунный провода одинаковых размеров. Медный провод, хотя и являясь более совершенным проводником, будет нагреваться сильнее, по причине того, что вбирает больше тока. Таким образом, то, что в иных обстоятельствах является положительным качество стекла, здесь превращается в недостаток. Стекло обычно дает дорогу [пробою] гораздо быстрее, чем эбонит; когда оно нагревается до определенной степени, разряд внезапно пробивает через [него] в определенной точке, принимая затем форму обычной дуги.
Эффект нагрева, вызванный молекулярной бомбардировкой диэлектрика, конечно, уменьшился бы, при повышении давления воздуха, и при огромном давлении он стал бы ничтожен, если соответственно не увеличить частоту.
В этих экспериментах мы можем часто наблюдать, что если шары расположены за пределами разрядного расстояния, то приближение, например, стеклянной пластины может индуцировать искру, проскакивающую между шарами. Это происходит, когда емкость шаров несколько ниже критического значения, дающего самую большую разницу потенциалов на выходах катушки. Приближение диэлектрика увеличивает диэлектрическую проницаемость пространства между шарами, давая такой же эффект, как если бы увеличивалась емкость шаров. Напряжение на выводах может тогда вырасти настолько, что воздушное пространство пробивается. Эксперимент лучше всего производить с плотным стеклом или слюдой.
Еще одно интересное наблюдение с пластиной из изоляционного материала: когда разряд проходит через нее, она сильно притягивается одним из шаров, а именно тем, который ближе к ней. Это обусловлено, очевидно, меньшим механическим действием бомбардировки с той стороны, и, возможно, также большей электризацией.
Читать дальше
Конец ознакомительного отрывка
Купить книгу