В межпланетных полетах вопрос радиационной защиты экипажа стоит еще острее. Земля экранирует половину жестких космических лучей, а ее магнитосфера почти полностью задерживает поток солнечного ветра. В открытом космосе без дополнительных мер защиты облучение вырастет на порядок. Иногда обсуждается идея отклонять космические частицы сильными магнитными полями, однако на практике ничего, кроме экранирования, пока не отработано. Частицы космического излучения неплохо поглощаются ракетным топливом, что наводит на мысль использовать полные баки как защиту от опасной радиации. Пионеры практической космонавтики, которые в начале 1960-х предлагали устраивать на межпланетных кораблях специальные радиационные убежища, окруженные баками с топливом, блоками аккумуляторов и контейнерами с грузами и пищей, как оказалось, были весьма близки к истине в вопросе радиационной безопасности.
Экипаж «Союза-11» последним стартовал в космос без спасательных скафандров. Фото: ИТАР-ТАСС
Нештатные ситуации
Нештатные, или попросту аварийные, ситуации возникают нечасто, но готовность к ним нужна постоянно. Внезапная разгерметизация отсеков, острое заболевание у кого-то из космонавтов или еще какой-нибудь «космический форс-мажор» могут потребовать экстренной эвакуации экипажа на Землю. Для этого к МКС всегда пристыкован дежурный «Союз», который в течение полугода играет роль спасательной шлюпки. Когда численность экипажа станции удвоится и достигнет шести человек, придется постоянно держать два дежурных «Союза», во всяком случае, пока не появятся более вместительные корабли, например «Орион» или «Клипер». Хотя атмосфера из чистого кислорода сейчас не используется, опасность пожара на станции нельзя сбрасывать со счетов. Казалось бы, в условиях невесомости нет конвекции, а значит, и притока свежего кислорода, так что любое возгорание должно угаснуть само собой. Однако «подпитывать» огонь может работающая система вентиляции. Коварство космического пожара в том, что его трудно засечь по звуку. В невесомости нет естественной конвекции, и пламя само по себе не шумит. Кроме того, слабые звуки заглушаются гулом работающего оборудования. При горении опасно не столько пламя, сколько концентрация токсичных продуктов горения, а также их прогонка по отсекам станции системой вентиляции. Поэтому основными подходами к борьбе с возгораниями является своевременность их обнаружения с помощью специальных датчиков огня и газоанализаторов, а также выключение вентиляции. Космонавтов необходимо снабжать противогазами, а на этапе проектирования аппарата применять негорючие и огнестойкие материалы, не выделяющие при нагреве токсичных веществ. Для повышения безопасности и надежности работы многие системы космических аппаратов, а в особенности пилотируемых, многократно резервируются. Ярким примером пользы резервных систем служит полет корабля «Аполлон-13» в апреле 1970 года. Неудачи преследовали миссию с самого начала, но наибольший «сюрприз» ждал троих астронавтов — Джеймса Ловелла, Джона Свайгерта и Фреда Хейза в понедельник 13 апреля. В этот день на полпути к Луне в служебном отсеке «Аполлона» взорвался бак с жидким кислородом, который питал один из топливных элементов корабля. Осколками был поврежден и второй бак. Практически сразу упало напряжение в электросети, многие системы пришлось отключить, температура в обитаемых отсеках понизилась. И тут как нельзя кстати оказался второй «обитаемый объем» — кабина лунного модуля «Аквариус», наличие которого во многом помогло астронавтам справиться с возникшими проблемами. Пережив несколько неприятных дней, страдая от холода и недостатка кислорода, отремонтировав подручными средствами систему удаления CO2, астронавты успешно вернулись на Землю 17 апреля. Эпопея «Аполлона-13» прекрасно иллюстрирует преимущества, которые дает резервирование систем. Не будь лунного модуля, вряд ли астронавты смогли бы выбраться из этой передряги.
Возвращение на землю
Особые функции возлагаются на систему жизнеобеспечения на этапах старта и посадки космического корабля . В это время, например, могут меняться давление и состав воздушной смеси. Но главной задачей является, конечно, обеспечение физической безопасности экипажа.
Для уменьшения воздействия перегрузок разработчики стараются равномерно распределить вес по всей поверхности тела, на которую человек опирается в кресле. Это особенно актуально для аппаратов с малым аэродинамическим качеством, экипаж которых подвергается перегрузкам от трех единиц и выше. Для них проектируются так называемые антропоморфные кресла с индивидуальными вкладышами — ложементами. Их изготавливают точно по фигуре космонавта. Человека помещают в неглубокую ванну, в которую заливают гипс; по гипсовой отливке делается пластиковая «стелька», которую укладывают в кресло. При «пересменке» на станции космонавты переносят свой ложемент из одного «Союза» в другой. Поза пилота подбирается так, чтобы при спуске перегрузки не позволяли крови отливать от головного мозга — это самая частая причина потери сознания под воздействием перегрузок.
Читать дальше