4В-1 «Венера-10» 14.06.1975—25.10.1975
ИСВ (проработал 2 года) плюс посадка спускаемого аппарата (65 мин.)
Pioneer Venus Orbiter 20.05.1978—04.12.1978
ИСВ (проработал 14 лет). Построил радиолокационную карту 93% поверхности
с разрешением около 80 км; исследовал облачную систему, магнитную обстановку, взаимодействие с солнечным ветром
Pioneer Venus Multiprobe 08.08.1978—09.12.1978
Спуск в атмосфере четырех зондов, запущенных с борта аппарата. Один незапланированно совершил посадку и 68 минут работал на поверхности
4В-1 «Венера-11» 09.09.1978—25.12.1978
Посадка спускаемого аппарата (СА) на дневной стороне (95 минут). Тонкий химанализ атмосферы и облаков, спектральный анализ рассеянного солнечного излучения, изучение молний
4В-1 «Венера-12» 14.09.1978—21.12.1978
Посадка (110 минут). Повтор программы «Венеры-11»
4В-1М «Венера-13» 30.10.1981—01.03.1982
Посадка (127 минут). Первая цветная панорама поверхности, химанализ и измерение механических свойств грунта
4В-1М «Венера-14» 04.11.1981—05.03.1982
Посадка (57 минут). Повтор программы «Венеры-13»
4В-2 «Венера-15» 02.06.1983—10.10.1983
ИСВ. Радиолокационная съемка северного полушария Венеры, температурное картирование поверхности
4В-2 «Венера-16» 07.06.1983—14.10.1983
ИСВ. Повтор программы «Венеры-15»
5ВК «Вега-1» 15.12.1984—11.06.1985
Исследования по пути к комете Галлея. СА плюс аэростатный зонд. Программа работ на поверхности запустилась преждевременно на высоте 17 км. Зонд 46 часов измерял метеорологические параметры на высоте 54 км
5ВК «Вега-2» 21.12.1984—15.06.1985
Повтор программы «Вега-1». СА провел 57 минут на поверхности: элементный анализ и измерение физико-механических свойств грунта
Magellan 05.05.1989—10.08.1990
ИСВ. Радиолокационное картирование всей поверхности с высоким разрешением
Galileo 18.10.1989—10.02.1990
Пролет на расстоянии 16 000 км по пути к Юпитеру. ИК-съемка, спектроскопические исследования. Не обнаружил признаков молний, наблюдавшихся «Венерами»
Cassini 15.10.1997—26.04.1998, 24.06.1999
Два пролета по пути к Сатурну на высоте 336 км и 603 км. Изучение космической пыли в окрестностях планеты, спектральная съемка глубин атмосферы в видимом диапазоне, измерение магнитного поля планеты радиопросвечивание атмосферы
MESSENGER 03.08.2004—24.10.2006
Пролет по пути к Меркурию на высоте 3 000 км. Научные наблюдения не проводились
Взгляд в облака
И все же остальные научные приборы Venus Express начали получать ценную информацию, причем еще до выхода аппарата на рабочую орбиту. Уже 24 апреля камера VMC сделала серию снимков облачного покрова Венеры в ультрафиолетовом диапазоне. После привязки к координатной сетке получилось мозаичное изображение, охватывающее значительную площадь облаков. Эта съемка впервые позволила провести качественный анализ структуры облачности в атмосфере Венеры. В ней выявились малоконтрастные ленточные структуры — по-видимому, являющиеся результатом действия сильных ветров. Венера, в отличие от Земли и других планет, поглощает солнечное излучение преимущественно в ультрафиолетовом диапазоне, а в других диапазонах большая часть света рассеивается облаками и уходит в космическое пространство. Это одна из причин, по которой Венера так ярко сияет на земном небосводе. Однако до сих пор непонятно, какое вещество в ее атмосфере обеспечивает высокое — более 50% — поглощение ультрафиолетового излучения.
Ударный метеоритный кратер
Ученые не ошиблись с выбором параметров рабочей орбиты, и новые открытия не заставили себя долго ждать. 29 мая станция провела очередную инфракрасную съемку южной полярной области, и там был обнаружен вихрь весьма неожиданной формы. Обычно атмосферные вихри, от смерчей до циклонов, формируются вокруг некоего центра, в котором вращение отсутствует. Появление этой «зоны спокойствия» в самом центре урагана (так называемого «глаза бури») объясняется соображениями симметрии: здесь у ветра просто нет предпочтительного направления, в котором он мог бы дуть. Но на южном полюсе Венеры неожиданно была обнаружена странная структура с двумя центрами, которые сложным образом связаны друг с другом.
«Изучив этот гигантский двойной шторм, мы обнаружили, что его структура изменяется в зависимости от высоты. Возникает ощущение, что мы смотрим на разные структуры, а не на одну целую, — говорит Пьер Дроссар, заместитель научного руководителя по прибору VIRTIS из Парижской обсерватории. — Новые данные, которые мы только начали анализировать и обрабатывать, выявляют еще большие различия». Насколько устойчиво это атмосферное образование, пока неясно.
Читать дальше