Получится ли фокус с удвоенным двузначным числом, например 3434? Ответ снова будет отрицательным, потому что 3434 — это 34, умноженное на 101, а 101 — тоже простое число. Математические знания позволяют нам предсказать, какие закономерности сработают, а какие необходимо проверить.
Вы сделаете фокус еще более надежным, если попросите друга быстро прочитать число вслух и моментально назовете, на что оно делится. Если друг сделает ошибку и, например, скажет 123124, вы сразу же ее исправите, указав на последнюю 4, и все же дадите правильный ответ с быстротой молнии. Это уже будет сопоставление с образцомкак часть алгоритма проверки. Вы знаете, что здесь должно быть, и проверяете соответствие. Некоторые программы в системах с особыми требованиями к безопасности осуществляют схожую проверку. Программисты включают в код утверждения, которые являются истинными в момент работы программы в этой точке. Если утверждение неожиданно оказывается ложным, можно запустить специальный код, чтобы разобраться с проблемой. Правильный ввод чисел играет большую роль, и, если люди вводят неверные числа, очень важно, чтобы программа не игнорировала их, но указывала на проблему и давала человеку возможность исправить ошибку (в отличие от нашего фокуса). Это лишь некоторые из многочисленных способов писать надежные программы, чтобы избежать катастроф.
Поиск по запаху: фокус с пахнущей картой
Вот еще один фокус, который кажется невозможным и при этом весьма увлекателен. Чтобы его показать, нужно найти исключение из известной вам математической закономерности, одновременно скрывая его от аудитории. Вы используете способность «находить карту по запаху человека, выбравшего ее». Очевидно, показывая этот фокус, нужно действовать очень тактично!
Попросите зрителя перетасовать карты в колоде. Так на них останется его запах. Потом заберите карты и скажите, что после первой тасовки на некоторых картах остается более сильный запах, чем на других. Вы быстро проходитесь по колоде, обнюхивая карты, и разделяете их на две примерно равные кучки. В одной оказываются карты с сильным запахом — вероятно, их больше касались во время тасовки. В другой — карты вообще без запаха. Вероятно, их пропустили во время тасовки.
Попросите зрителя произвольно выбрать и запомнить одну из карт в стопке с сильным запахом и не говорить вам. Потом зрителю нужно положить ее в стопку без запаха. Вы тасуете эту стопку, а потом снова нюхаете каждую карту. Только по запаху вы можете верно указать карту, которую зритель спрятал в стопке непахнущих карт.
Секретный алгоритм без запаха
Секрет фокуса — обеспечить неочевидную для других закономерность (в разнице между пахнущими и не пахнущими картами) и увидеть исключения из этой закономерности. Здесь для этого используются простые числа. Вы кладете все карты, соответствующие простым числам, в одну стопку, а остальные — в другую. Пусть в нашем случае туз имеет номер 1, валет — 11, дама — 12, а король — 13. Чтобы отделить простые числа, вы кладете 2, 3, 5, 7, валета и короля в одну стопку, а остальные карты — в другую. Поскольку 1 по определению не относится к простым числам, туз отправляется во вторую стопку. Конечно, запах здесь совершенно ни при чем. Вы учитываете достоинство карт и делите колоду по принципу, известному только вам.
Оставшаяся часть фокуса требует от вас всего лишь уверенности и способности увидеть исключение из простой закономерности — это будет несложное упражнение на сопоставление с образцом. Представьте, что в «пахнущей» стопке находятся карты, соответствующие составным числам. Тогда вам нужно искать карту с простым числом в перетасованной «непахнущей» стопке. Для вас она будет выделяться, как огромная блестящая иголка в стоге сена, в то время как зрители будут видеть просто стог.
Конечно, есть и другие шаблоны, чтобы определить разницу между стопками, — например, класть красные карты в одну, а черные — в другую или фигурные карты в одну, а фоски — в другую, однако это слишком очевидно. Такие шаблоны были бы понятны аудитории, и фокус не получился бы.
Увидеть мир таким, какой он есть
Чтобы компьютер видел, важно найти границы
Давайте теперь перейдем к более сложному явлению — возможности компьютера увидеть мир. Для этого мало подсоединить к нему камеру. Компьютер должен уметь определять, что присутствует на картинке, — находить шаблоны и понимать, каким предметам они соответствуют, то есть знать, чтó он видит. Только в этом случае мы и правда сможем утверждать, что он «видит».
Читать дальше
Конец ознакомительного отрывка
Купить книгу