ва до нескольких
ква ). На рис. представлен С. э. напряжения для питания телевизоров и радиоприёмников от сети с напряжением 127/220
в (в стабилизаторе имеется колодка для переключения выводов автотрансформатора при переходе от одного номинала напряжения к другому). Дроссель Др 1 работает в режиме насыщения, поэтому колебания сетевого напряжения практически не влияют на его магнитный поток; для компенсации незначительных колебаний служит вспомогательная обмотка
wk . Ненасыщенный дроссель Др 2 и конденсатор С образуют феррорезонансный контур, с которого снимается выходное стабилизированное напряжение. Внутреннее сопротивление С. э. значительно меньше сопротивления номинальной нагрузки. Такой стабилизатор при напряжении сети 127 ± 19/38 или 220 ± 33/66
в (при колебаниях частоты в пределах 49,5—50,5
гц ) обеспечивает выходное напряжение 220 ± 11/22
в , т. е. коэффициент стабилизации 3%.
Лит . см. при ст. Стабилизация в автоматическом управлении и регулировании.
М. М. Майзель.
Электрическая схема феррорезонансного стабилизатора напряжения: U вх— напряжение сети 127/220 в ; U вых— стабилизированное напряжение 220 в ; Др 1 — насыщенный дроссель; Др 2 — ненасыщенный дроссель; АТР — автотрансформатор; С — конденсатор; Пр 1, Пр 2 — предохранители для сетевого напряжения 220 и 127 в ; w k— компенсационная обмотка; Л — контрольная лампочка.
Стабилизаторы полимерных материалов
Стабилиза'торы полиме'рных материа'лов,ингибиторы старения, вещества, тормозящие старение полимеров ; подразделяются на несколько групп: антиоксиданты, термостабилизаторы, антиозонанты, светостабилизаторы, антирады. Антиоксиданты повышают устойчивость полимеров к действию атмосферного кислорода, замедляя их термоокислительную деструкцию. Важнейшие С. п. м. этой группы — производные вторичных ароматических аминов (например, фенил-b-нафтил-амин), гидрохинолинов (например, 6-этокси-2,2,4-триметил-1,2-дигидрохинолин), фенолов и бисфенолов (2,6-ди-трет-бутил-4-метилфенол и др.), арилфосфитов [например, три-( n -нонилфенил)-фосфит]. Термостабилизаторами — ингибиторами деструкции термостойких полимеров (см. Теплостойкость и термостойкость полимеров ) — служат окислы металлов, некоторые металлорганические соединения и др. Антиозонанты, защищающие полимеры от атмосферного озона, могут действовать по различным механизмам. Так, химические антиозонанты (производные n -фенилен диамина, трибутилтиомочевина и др.) реагируют, например, с озоном и с продуктами озонолиза полимера; физические антиозонанты (главным образом смеси твёрдых парафиновых углеводородов кристаллической структуры) мигрируют на поверхность полимера, создавая т. о. барьер для его взаимодействия с озоном. Светостабилизаторами (фотостабилизаторами) служат вещества, способные поглощать ультрафиолетовый свет (например, сажа) или тормозить фотоокислительную деструкцию, вызываемую одновременным действием света и кислорода (производные бензофенона, эфиры салициловой кислоты и др.). Свойствами антирадов — ингибиторов радиационного старения — обладают некоторые ароматические углеводороды (например, нафталин, антрацен), а также вторичные ароматические амины и произволные n -фенилендиамина. Вещества, используемые в качестве С. п. м., должны удовлетворять ряду общих требований: хорошо диспергироваться в полимерах и, как правило, не мигрировать на их поверхность (исключение — антиозонанты), иметь низкую летучесть, не влиять на технологические режимы переработки полимеров и на специфические свойства изделий. Стабилизаторы, которые вводят в белые и цветные материалы, не должны изменять окраску последних. Содержание стабилизатора в полимере составляет в большинстве случаев 0,1—3,0%. При одновременном применении нескольких С. п. м. (обычно 2—3) часто наблюдается взаимное усиление их эффективности, т. н. синергизм.
Лит.: Фойгт И., Стабилизация синтетических полимеров против действия света и тепла, пер. с нем., Л., 1972; Химические добавки к полимерам. Справочник, М., 1973; Ангерт Л. Г., Состояние и перспективы исследований в области защиты резин от старения, «Каучук и резина», 1974, №8.
Л. Г. Ангерт.
Стабилизация (автоматич.)
Стабилиза'цияв автоматическом управлении и регулировании, поддержание заданного постоянного во времени значения одной (или нескольких) регулируемой величины x ( t ) вне зависимости от внешних (по отношению к объекту С.) и внутренних возмущающих (дестабилизирующих) воздействий f , стремящихся отклонить регулируемую величину от заданного значения x 0 ( t ) = x 0 = const (см. Регулирование автоматическое ). Можно стабилизировать не только какую-либо измеряемую регулируемую величину, например эффективное значение электрического напряжения, но и любую заданную её функцию (и даже функцию нескольких первичных измеряемых величин). Количественную характеристику эффективности С. даёт безразмерный коэффициент стабилизации s, равный частному от деления малого относительного изменения дестабилизирующего воздействия
на вызываемое им малое же относительное изменение регулируемой величины
; в пределе малые изменения заменяют дифференциалами:
Читать дальше