Границы зёрен нарушают строгую периодичность в расположении атомов в кристалле. Однако это — не единственные дефекты в кристаллах. Дефектами являются микроскопические включения (в частности, зародыши др. кристаллической модификации, пустоты и т. п.), сама поверхность образца, чужеродные примесные атомы, вакансии, атомы в междоузлиях, дислокации и т. д. Наличие или отсутствие тех или др. дефектов во многих случаях определяет так называемые структурночувствительные свойства Т. т.: механические (прочность, пластичность), электропроводность, оптические и др. (см. ниже).
Межатомные связи. По типам связей Т. т. делят на 5 классов, каждый из которых характеризуется своеобразным пространств. распределением электронов (табл. 1). 1) В ионных кристаллах (NaCI, KCl и др.) основные силы, действующие между ионами, — силы электростатического притяжения. Распределение электронного заряда вблизи каждого иона близко к сферическому и слегка нарушается в области соприкосновения соседних ионов. 2) В кристаллах с ковалентной связью валентные электроны обобществлены соседними атомами.
Табл. 1. — Классификация кристаллов по типам связей
Тип кристалла |
Пример |
Энергия связи*, ккал/моль |
Характерные свойства |
Ионный …………. Атомный (с ковалентной связью) Металлический… Молекулярный…. С водородными связями..………… |
NaCI С (алмаз), Ge, Si Cu, Al Ar, СН 4Н 2О (лёд) H 2F |
180—220 170—283 26—96 1,8 3—10 |
Отражение и поглощение света в инфракрасной области; малая электропроводность при низких температурах; хорошая ионная проводимость при высоких температурах Высокая твёрдость (у чистых образцов), слабая проводимость при низких температурах Высокая электропроводность Низкие точки плавления и кипения, сильная сжимаемость Тенденция к полимеризации; энергия связи между молекулами больше, чем у аналогичных молекул без водородных связей |
* Для кристаллов первых двух типов энергия связи определена при 300 К; для молекулярных кристаллов и кристаллов с водородными связями — в точке плавления. Иногда мерой энергии связи служит энергия (на одну частицу), которую надо затратить, чтобы, нагревая Т. т. от 0 К, расщепить его на невзаимодействующие атомы или ионы. |
Кристалл по существу представляет собой огромную молекулу. Этот тип характеризуется высокой электронной плотностью между ионами и резкой направленностью связей. Примеры кристаллов с ковалентной связью: алмаз, Ge, Si. 3) У большинства металлов (например, щелочных) энергию связи обусловливают электроны проводимости; металл можно представлять как решётку из положительных ионов, погруженную в электронную жидкость (металлическая связь). У некоторых металлов (например, переходных) важна также ковалентная связь, осуществляемая электронами незаполненных внутренних оболочек. 4) В молекулярных кристаллах (например, в отвердевших инертных газах) молекулы связаны слабыми электростатическими силами (силы Ван-дер Ваальса), обусловленными взаимной поляризацией молекул. Для всех молекулярных кристаллов характерна слабая связь; они имеют низкую точку плавления и заметно сублимируют. В большинстве органических кристаллов молекулы связаны силами Ван-дер Ваальса (см. Межмолекулярное взаимодействие ) . 5) В кристаллах с водородными связями каждый атом водорода связан силами притяжения одновременно с двумя др. атомами. Водородная связь — основная форма взаимодействия между молекулами воды. Водородная связь вместе с электростатическим притяжением дипольных моментов молекул H 2O определяет свойства воды и льда. Следует отметить, что классификация Т. т. по типам связи условна. Во многих веществах наблюдаются комбинации различных типов связи.
Природа сил связи в Т. т. получила объяснение только после привлечения квантовой механики, хотя источником сил, действующих между атомными частицами, в Т. т. служат электростатическое притяжение и отталкивание. Образование из атомов и молекул устойчивых Т. т. показывает, что силы притяжения на расстояниях ~ 10 -8 см уравновешиваются силами отталкивания, быстро спадающими с расстоянием. Это даёт возможность в ряде случаев рассматривать атомные частицы как твёрдые шары и характеризовать их кристаллохимическими радиусами (см. Кристаллохимия ).
Для описания энергии U Т. т. как функции среднего расстояния r между частицами часто пользуются формулой Ленарда — Джонса:
Читать дальше