Патил взял в библиотеке несколько книг и за одни выходные самостоятельно изучил школьный курс математики. В итоге он добился неплохих успехов и был принят в колледж университета в Сан-Диего, где окончил университетский курс математики за три года. Потом он получал степень PhD по прикладной математике в Мэрилендском университете.
Вначале он столкнулся с некоторыми трудностями. «Я получил образование в США, а конкурировать приходилось с русскими, израильтянами и корейцами. На первом экзамене я катастрофически провалился, получив, кажется, второй балл с конца списка. Самый низкий балл был у студента, не явившегося на экзамен». Зато на второй попытке наш герой набрал самые высокие баллы. Окончив докторантуру, Патил начал преподавать в Мэрилендском университете, одновременно занимаясь исследованиями по моделированию погоды. Ему пришлось поработать и на правительственные разведывательные организации. Финансирование в то время было ограниченным, и он уволился, перейдя работать в Skype, а затем в eBay. Потом он стал ведущим аналитиком в LinkedIn, где люди, занимающие эту должность, имеют огромное влияние на процесс разработки продуктов.
Сейчас Патил – «исследователь данных, проживающий по месту службы» (наверно, первый человек, чья должность носит такое название) в венчурной фирме Greylock Partners; он помогает клиентам компании решать проблемы с данными и аналитикой. Возможно, он представляет собой лучший пример человека со скрытыми математическими способностями.
Используйте поиск в интернете для обнаружения неизвестных концепций и понятий, связанных с вашими данными
В эру глобализации экономические и деловые термины мелькают в новостях каждый день. То же можно сказать о повседневных разговорах. Поскольку многие незнакомы с общеупотребительными понятиями и характеристиками, они просто пропускают их мимо ушей. Но если вы собираетесь стать количественным аналитиком, то вам придется запоминать их, записывать, а впоследствии пытаться при помощи Google найти их значение. Большой объем информации такого рода есть в Википедии; существуют онлайновые курсы и электронные учебники по многим предметам. Распечатайте результаты поиска и систематизируйте их в отдельный файл для последующего изучения. Это хороший способ учиться и с течением времени преодолеть страх перед числами. Вероятно, вы не поймете всего, что прочитаете, но тем не менее чему-то научитесь. Если проявлять упорство в течение хотя бы шести месяцев, то вы немало удивитесь, когда узнаете, что ваши коллеги считают вас весьма информированным человеком, особенно в том, что касается чисел.
Если вам действительно интересны числа, то со временем вы будете понимать их все лучше и лучше. Например, когда вы слышите, что Усейн Болт самый быстрый человек в мире, у вас возникает вопрос, каково его лучшее время. Несложно выяснить, что на стометровке оно составляет 9,58 секунды. Теперь задайте себе вопрос, чему равна его скорость в пересчете на километры (или мили) в час. Проведя несложные расчеты, вы обнаружите:
9,58 секунды ≈ 10 секунд = 1/6 минуты = 1/360 часа.
100 м = 0,1 км.
Таким образом,
Теперь у вас возникает вопрос, чему равен мировой рекорд в марафоне: 2 часа 3 минуты 59 секунд. Простой расчет показывает, что для этого марафонец должен бежать со скоростью около 20,4 километра в час (12,7 мили в час). Сравнив эти две средние скорости, вы поймете, как быстро может бежать человек на самой короткой и самой длинной олимпийской дистанции. Любопытство во всем, что касается чисел, – вот отличительная черта хорошего количественного аналитика.
Количественный подход ↔ Количественные знания
Чтобы расширить свои познания в количественном анализе, на следующем этапе полезно ознакомиться с начальным курсом статистики для широкого круга читателей. Одна из наиболее популярных книг такого рода – уже упоминавшаяся нами «Как обмануть с помощью статистики» (How to Lie with Statistics) Даррела Хаффа. Это наиболее продаваемая книга по статистике во второй половине XX века [90]. Она представляет собой краткое, увлекательное, иллюстрированное изложение наиболее часто встречающихся ошибок, как намеренных, так и непреднамеренных, имеющих отношение к статистике и способных привести к неверным выводам. Это действительно прекрасная книга, рассказывающая о том, как можно лгать языком статистики и как проверить достоверность статистических данных. Можно порекомендовать также опубликованную в 1974 году книгу Стивена Кемпбелла «Недостатки и заблуждения в статистическом мышлении» (Flaws and Fallacies in Statistical Thinking). С учетом даты выхода это удивительно полезная книга для всех, кто читает газеты и обращает внимание на содержащиеся в них статистические данные [91]. Гораздо более новая книга на ту же тему – «Распространенные ошибки в статистике и как их избежать» (Common Errors in Statistics and How to Avoid Them) Филипа Гуда и Джеймса Хардина [92]. Таких книг множество, почитайте рецензии и купите лучшие.
Читать дальше
Конец ознакомительного отрывка
Купить книгу