Ким Хо - О чем говорят цифры. Как понимать и использовать данные

Здесь есть возможность читать онлайн «Ким Хо - О чем говорят цифры. Как понимать и использовать данные» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Манн Иванов Фербер, Жанр: Экономика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

О чем говорят цифры. Как понимать и использовать данные: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «О чем говорят цифры. Как понимать и использовать данные»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Неважно, чем вы интересуетесь, в какой сфере работаете и каких размеров ваша компания – цифры и аналитика сегодня повсюду, и всем приходится иметь с ними дело. Эта книга в доступной форме познакомит вас с количественным анализом, его терминами и методами, поможет развить аналитические навыки и разговаривать на одном языке с количественными аналитиками.
На русском языке публикуется впервые.

О чем говорят цифры. Как понимать и использовать данные — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «О чем говорят цифры. Как понимать и использовать данные», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Категориальные (также называемые номинальными) переменные. В этом случае переменная может приобретать одно из нескольких заранее определенных значений. Так измеряются цвет глаз, вкус мороженого, штат или район проживания. Поскольку перевод таких значений в количественную форму представляет определенные сложности, существует отдельное направление статистики, занимающееся анализом категориальных данных.

Ординальные переменные. Эти переменные имеют упорядоченные количественные значения, причем чем оно больше, тем сильнее выражен соответствующий признак. Таким образом, у этих переменных разница между 1 и 2 – это не то же самое, что разница между 5 и 6. Типичный пример ординальных переменных – шкала Ликерта, получившая название в честь автора, социолога Ренсиса Ликерта. Обычно применяется в опросах и включает такие значения, как «полностью согласен», «отчасти согласен», «не могу выразить отношение», «отчасти не согласен», «не согласен». Несколько ординальных переменных, сведенных вместе, носят название шкалы Ликерта.

Количественные (интервальные и рациональные) переменные. Значения этих переменных выражены числами, обычно в стандартных единицах: вес в фунтах или килограммах, рост в дюймах или сантиметрах. Чем больше значение, тем сильнее выражен соответствующий параметр. Количественные переменные хорошо подходят для традиционных видов статистического анализа, например корреляционного или регрессионного.

Таким образом, массив данных организован с учетом переменных, выбранных на предыдущем шаге.

Если значения нужных вам переменных часто собирает и анализирует кто-то еще (иногда такие факты всплывают во время изучения предыдущих поисков решения), то этот этап будет несложным. Можно просто позаимствовать результаты измерений, полученные вашими предшественниками. Однако в некоторых случаях приходится вести работу самостоятельно. Нужно помнить, что даже субъективные события можно систематически измерять.

4. Сбор данных
Предположим что вам нужно собрать данные по волнующей в наше время многих - фото 18

Предположим, что вам нужно собрать данные по волнующей в наше время многих (если судить по телевизионной рекламе) проблеме мужской потенции. Оказывается, что вам повезло: на эту тему уже проводился сбор данных, которые вполне подходят для ваших целей. Однако если бы вы были первопроходцем в этой области, то пришлось бы проводить сбор данных самостоятельно.

В 1990-е годы Р. С. Розен и его коллеги разработали компактный, надежный и простой для изучения критерий потенции, чувствительный к изменениям в состоянии здоровья пациентов в результате лечения [32]. О проблемах с потенцией можно узнать только от самого пациента. Объективных диагностических тестов не существует, и это весьма усложняет жизнь практикующим врачам. Розен и его коллеги определили, что ключевыми переменными для анализа проблемы мужской потенции являются:

• регулярность эрекции

• сила эрекции

• частота возбуждения

• способность к половому акту

• удовлетворение

В их разрезе был организован сбор информации с использованием вопросов, приведенных в табл. 3.1.

Таблица 3.1

Ключевые переменные для диагностирования эректильной дисфункции

Вопрос о том возможно ли ответы на них перевести в диагноз решается довольно - фото 19 Вопрос о том возможно ли ответы на них перевести в диагноз решается довольно - фото 20

Вопрос о том, возможно ли ответы на них перевести в диагноз, решается довольно просто. Каждому варианту ответа присваивается балл от 5 до 25. Проблему с потенцией классифицировали по пяти степеням: серьезная (5–7), умеренная (8–11), от умеренной до незначительной (12–16), незначительная (17–21) и отсутствие проблемы (22–25). Этот простой в применении диагностический тест называется IIEF-5 (вариант Международного индекса эректильной функции из пяти вопросов) и прекрасно иллюстрирует способы сбора субъективной информации.

Неважно, каким объемом данных вы располагаете, – всегда остаются возможности собрать еще больше или расширить круг показателей, по которым собирались данные. После начала работы над проектом обычно выявляется, что тех показателей, которые были отобраны на этапе идентификации проблемы, недостаточно. Талантливый квант Рама Рамакришнан, о котором мы уже говорили в главе 2 Глава 2 Формулирование проблемы Хотя в мире существует множество разных видов количественного анализа, все они имеют некоторые общие черты и порядок проведения. Как мы уже говорили в главе 1 , количественный анализ включает три основных этапа и шесть шагов. , в своем блоге описал интересный способ улучшить качество данных: «Одно из моих любимых занятий – улучшать качество данных. Это означает не увеличивать их количество, а, скорее, получать новые по характеру данные по сравнению с теми, которые использовались до этого момента. Если у вас имеются демографические данные, добавьте данные об объемах закупок. Если у вас и те и другие, попробуйте добавить функцию их свободного просмотра. Если у вас есть количественные данные, добавьте к ним текстовые (кстати говоря, в последней работе мы получили весьма обнадеживающие результаты, добавив к традиционным данным об объемах продаж и сбытовых мероприятиях текстовые данные о покупателях с целью их персонификации и моделирования потребительского поведения)» [33].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «О чем говорят цифры. Как понимать и использовать данные»

Представляем Вашему вниманию похожие книги на «О чем говорят цифры. Как понимать и использовать данные» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «О чем говорят цифры. Как понимать и использовать данные»

Обсуждение, отзывы о книге «О чем говорят цифры. Как понимать и использовать данные» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x