вание желудочка повышало радиоактивность мозга и т.д. (рис. 6, В).
Этими экспериментами было показано, что целевую селекцию крови по органам осуществляют минисердца.
В чем же физическая суть распределения целевого кровотока? Известно, что наиболее устойчивой формой движения жидкости в реальном мире является структура упорядоченного вихря. Для доказательства, что и в организме животных и человека действует именно вихревой целевой кровоток, была создана гидродинамическая модель. В ней трубки Пинто соединялись с источником давления жидкости не жестким, а эластичным шлангом. При изменении его конфигурации образовывались вихревые потоки воды, которые по желанию направлялись в заведомо избранную манометрическую трубку. Это устройство доказывает, что движением жидкости, находящейся в вихревом состоянии, можно целенаправленно управлять.
Подобный механизм в животном мире действует миллионы лет. У двоедышащих потоки артериальной и венозной крови в полости одного и того же желудочка вначале преобразуется в вихревые “упаковки”, которые затем выталкиваются в разные направления: венозная кровь — к жабрам-легким, а артериальная — к мозгу. Такой же механизм разделения потоков крови действует у плода человека. Артериальная и венозная кровь трабекулярной системой левого желудочка скручивается в раздельные
вихри, и артериальный вихрь выбрасывается в мозг, а обедненный кислородом — к внутренним органам и плаценте.
Этот механизм сохраняется в течение жизни человека. Известны феномены патологической синюшности частей тела, наблюдаемые у людей [5]. Локализация их на теле зависит от места незарощенного боталова протока в межжелудочковой перегородке. Отсюда потоки венозной крови устойчиво идут только в одни и те же части тела, поддерживая в них синюшность, чем и выявляют местоположение патологии в сердце (рис. 7).
Следующий эксперимент был направлен на выяснение вопроса: действительно ли в сердце создаются вихревые структуры крови? И если да, то сохраняются ли они на протяжении артериального русла?
Животным внутривенно вводился краситель, а затем их мгновенно замораживали в жидком азоте, после чего делалась послойная гистограмма срезов артерий и полостей сердца. При сопоставлении фотографий срезов артерий и сердца была реконструирована картина структурных движений эритроцитов. Полости сердца и артерии на всем своем протяжении были наполнены сложными образованиями кровяных шариков (рис. 8), напоминающих веретенообразную архитектонику.
Эти эксперименты подтвердили гипотезу Чижевского и Ахуджа, что эритроциты в артериальных руслах движутся в структурированных “конгломератах” (рис. 9) [6, 7].
Для создания подобных устойчивых вихревых упаковок крови и управления ими сердце обладает всеми необходимыми средствами “те-
моники” [8. 9]: специфической мускулатурой, трабекулярными ячейками, клапанами, системой коронарно-тебезиевых сосудов (рис. 10). механизмом управления электромагнитными полями.
В результате взаимодействия противотока микроструй из сосудов Тебезия с потоками крови из предсердий происходит скручивание струй, а сокращения синусов фиксирует их местоположение в полостях желудочков.
Благодаря тому, что возникновения вихревых объемов эритроцитов детерминированы топографическим положением минисердец, спиральные мышцы Маккаллума задают каждому из них в момент систолы свой вектор пелевого движения.
Неясным остается вопрос: каким образом вихревые упаковки находят предназначенную им цель и как они определяют свой путь движения в порядках разветвления сосудов?
Управление кругодвижением крови традиционно связано в физиологии с обязательным участием в нем нервной системы. Более ста лет исследователи искали приспособления, с помощью которых центральная и периферическая
нервные системы могли бы регулировать величину кровотока, его скорость, сортировать элементы крови по возрасту’, количеству кислорода в них и направлять по назначению, но поиски не дали ожидаемого результата.
Многими работами доказано, что регионарный кровоток осуществляется и без участия нервной системы [10]. Гипотезы о существовании периферического артериального сердца [11], химической регуляции [12], центробежно- роторного насоса [6] также не дают ответа на явления, имеющие место в потоках крови.
Это заставляет предполагать о существовании какой-то реальной, внутрисосудистой связи. Ее действия позволяют каждому органу самостоятельно запрашивать себе порцию крови необходимого состава и объема и доставлять ее целевым назначением в определенный орган для покрытия нужд локального гомеостаза.
Читать дальше