Очевидно, однако, что здесь что-то не чисто. Мы начали с микроскопических законов физики, совершенно инвариантных относительно направления времени, – они работают одинаково хорошо как вперед во времени, так и назад. А Больцман утверждал, что получил на основе этих законов результат, абсолютно точно не обладающий свойством инвариантности и приводящий к очевидной стреле времени, что подтверждается словами об увеличении энтропии по направлению к будущему. Как же можно получить необратимые результаты исходя из обратимых предположений?
Данное возражение было громко и ясно высказано Йозефом Лошмидтом в 1876 году, после того как схожие сомнения появились у Уильяма Томсона (лорда Кельвина) и Джеймса Клерка Максвелла. Лошмидт был близким другом Больцмана, взявшим молодого физика под свою опеку в Вене в 1860-е годы. И он не проявлял никакого скептицизма по отношению к атомной теории; в действительности Лошмидт первым сумел точно оценить физические размеры молекул. Однако ему было невдомек, как Больцман сделал вывод об асимметрии времени, не прибегая к помощи его предположений.
Доводы, стоящие за тем, что нам сегодня известно под названием «возражения Лошмидта об обратимости», просты. Рассмотрим какое-то конкретное микросостояние, соответствующее макросостоянию с низкой энтропией. Оно с огромной вероятностью будет развиваться в сторону высокоэнтропийных состояний. Но инвариантность относительно отражения времени гарантирует, что для каждого такого пути развития существует другой допустимый путь – зеркальное отражение оригинала, – начинающийся в высокоэнтропийном состоянии и эволюционирующий навстречу низкой энтропии. В пространстве всех процессов, которые могут происходить с течением времени, можно найти ровно столько же систем, начинающих существование в условиях высокой энтропии и приходящих в состояние с низкой энтропией, как и систем, переходящих из низкоэнтропийного состояния к высокоэнтропийному. На рис. 8.5, где показано пространство состояний, разделенное на макросостояния, мы нарисовали траекторию, берущую начало в макросостоянии с очень низкой энтропией. Однако траектория не появляется из ниоткуда; она должна была существовать и до того, и в ее истории должно было быть состояние с высокой энтропией, – явный пример пути, вдоль которого энтропия уменьшилась. Очевидно, что если вы верите в динамику, инвариантную относительно отражения времени (как все эти ученые), то совершенно невозможно доказать, что энтропия всегда только увеличивается. [146]
Однако Больцман что-то доказал, и, насколько можно было судить, в его рассуждениях не было математических или логических ошибок. Скорее всего, в его доводы каким-то образом проникло предположение об асимметричности времени, даже если эта идея не была высказана явно.
Действительно, так и случилось. Одним из важнейших шагов в аргументах Больцмана было предположение о молекулярном хаосе – Stosszahlansatz по-немецки, что можно буквально перевести как «гипотеза о числе столкновений». Суть его в том, что мы считаем движение молекул произвольным, то есть они не строят коварных заговоров с целью подчинить свое движение определенной схеме. Но для того, чтобы энтропия уменьшалась, именно это и требуется – коварный заговор! Таким образом, Больцман, в сущности, доказал, что энтропия может увеличиваться только в том случае, если с самого начала отмести любые альтернативные варианты. В частности, он предполагал, что импульсы любой пары частиц до того, как они столкнутся, независимы или не скоррелированы между собой. Однако это «до» как раз и иллюстрирует то самое предположение об асимметричности времени; если частицы никак не скоррелированы до столкновения, то после между ними установится взаимосвязь или корреляция. Вот так предположение о необратимости прокралось в доказательство.
Если взять систему в состоянии с низкой энтропией и позволить ей развиваться по направлению к увеличению энтропии (например, подождать, пока растает кубик льда), то после того, как все закончится, между молекулами можно будет найти огромное количество корреляций. В частности, среди них будут корреляции, гарантирующие, что если мы инвертируем все импульсы, то система вернется в низкоэнтропийное начальное состояние. В рассуждениях Больцмана такая возможность учтена не была. Он доказал, что энтропия никогда не будет уменьшаться, если отбросить обстоятельства, при которых энтропия могла бы уменьшиться.
Читать дальше
Конец ознакомительного отрывка
Купить книгу